留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负压轻炭化木材物理力学性能

薛紫荞 王雪花 周亚琴 陈梦奇 黄琼涛

薛紫荞, 王雪花, 周亚琴, 陈梦奇, 黄琼涛. 负压轻炭化木材物理力学性能[J]. 浙江农林大学学报, 2019, 36(1): 177-182. doi: 10.11833/j.issn.2095-0756.2019.01.022
引用本文: 薛紫荞, 王雪花, 周亚琴, 陈梦奇, 黄琼涛. 负压轻炭化木材物理力学性能[J]. 浙江农林大学学报, 2019, 36(1): 177-182. doi: 10.11833/j.issn.2095-0756.2019.01.022
XUE Ziqiao, WANG Xuehua, ZHOU Yaqin, CHEN Mengqi, HUANG Qiongtao. Physical and mechanical properties of low thermo-vacuum treated wood[J]. Journal of Zhejiang A&F University, 2019, 36(1): 177-182. doi: 10.11833/j.issn.2095-0756.2019.01.022
Citation: XUE Ziqiao, WANG Xuehua, ZHOU Yaqin, CHEN Mengqi, HUANG Qiongtao. Physical and mechanical properties of low thermo-vacuum treated wood[J]. Journal of Zhejiang A&F University, 2019, 36(1): 177-182. doi: 10.11833/j.issn.2095-0756.2019.01.022

负压轻炭化木材物理力学性能

doi: 10.11833/j.issn.2095-0756.2019.01.022
基金项目: 

国家自然科学基金资助项目 31800471

国家木竹产业技术创新战略联盟科研计划项目 TIAWB201708

南京林业大学大学生创新训练计划项目 2016NFUSPITP179

详细信息
    作者简介: 薛紫荞, 从事家具用材改性研究。E-mail:809569841@qq.com
    通信作者: 王雪花, 讲师, 博士, 从事木/竹质建筑材料研究。E-mail:xuehua3099@sina.com
  • 中图分类号: TS652;S781.29

Physical and mechanical properties of low thermo-vacuum treated wood

  • 摘要: 对比了奥克榄Aucoumea klaineana,椴木Tilia europaea,单瓣豆Monopetalanthus sp.等3种木材在同一炭化条件下物理力学性能的变化,探究负压轻炭化处理木材的可行性与实际效果。将3种木材分别置于真空炭化箱内以160℃,0 MPa的条件处理3.0 h,然后将木材按照国标规定的木材物理力学试材锯解及试样截取方法加工,之后分别测量木材的密度、色差、冲击韧性、抗弯强度、抗弯弹性模量、硬度、干缩率和湿胀率。结果表明:在该炭化工艺下单瓣豆的体积干缩系数降低了16.00%,尺寸稳定性有较大改善;抗弯强度增加了18.00%,径面、弦面和端面硬度分别增加了19.00%,33.00%和50.00%,冲击韧性损失24.00%。负压轻炭化能够在一定程度上改善木材的尺寸稳定性,并且使其物理力学性能不受太大损失。
  • 图  1  不同试材的素材与炭化材密度对比图

    Figure  1  Density of treated and control samples

    图  2  不同试材炭化前后色差统计图

    Figure  2  Color deviation of treated and control samples

    图  3  不同试材素材与炭化材抗弯强度对比

    Figure  3  MOR of treated and control samples

    图  4  不同试材的素材与炭化材抗弯弹性模量对比

    Figure  4  MOE of treated and control samples

    图  5  不同试材的素材与炭化材冲击韧性对比图

    Figure  5  Toughness of treated and control samples

    表  1  3种试材的气干干缩率统计分析

    Table  1.   Statistical figures of woods' air-dry shrinkage

    材种 试样数/个 径向干缩率/% 弦向干缩率/% 体积干缩率/%
    奥克榄 素材 10 3.20 ± 0.009 6 3.20 ± 0.008 6 6.30 ± 0.005 2
    炭化材 10 3.10 ± 0.005 9 3.20 ± 0.005 8 6.80 ± 0.005 1
    椴木 素材 10 4.60 ± 0.005 9 5.90 ± 0.005 7 10.90 ± 0.006 9
    炭化材 10 4.50 ± 0.001 7 6.10 ± 0.003 8 10.30 ± 0.004 9
    单瓣豆 素材 10 2.70 ± 0.004 9 5.60 ± 0.005 1 8.90 ± 0.006 1
    炭化材 10 2.30 ± 0.004 6 4.40 ± 0.008 7 7.00 ± 0.009 8
    说明:表中“±”后数值表示数据的标准差
    下载: 导出CSV

    表  2  3种试材的全干干缩率统计分析

    Table  2.   Statistical figures of woods' absolute-dry shrinkage

    材种 试样数/个 径向干缩率/% 弦向干缩率/% 体积干缩率/% 体积干缩系数/%
    奥克榄 素材 10 5.30 ± 0.012 1 5.00 ± 0.012 7 10.40 ± 0.004 4 35 ± 0.011 4
    炭化材 10 5.10 ± 0.008 0 5.10 ± 0.008 9 11.00 ± 0.014 4 35 ± 0.022 7
    椴木 素材 10 7.10 ± 0.003 3 8.10 ± 0.022 6 16.00 ± 0.008 9 53 ± 0.024 0
    炭化材 10 7.10 ± 0.002 0 8.90 ± 0.004 3 15.60 ± 0.004 8 52 ± 0.016 2
    单瓣豆 素材 10 4.50 ± 0.005 2 8.30 ± 0.009 4 13.20 ± 0.011 4 44 ± 0.016 2
    炭化材 10 4.30 ± 0.011 9 7.10 ± 0.010 1 11.80 ± 0.016 9 37 ± 0.038 4
    说明:表中“±”后数值表示数据的标准差
    下载: 导出CSV

    表  3  3种试材的气干湿胀率统计分析

    Table  3.   Statistical figures of woods' air-dry swelling

    材种 试样数/个 径向湿胀率/% 弦向湿胀率/% 体积湿胀率/%
    奥克榄 素材 10 1.60 ± 0.003 3 1.50 ± 0.004 2 3.70 ± 0.003 7
    炭化材 10 1.20 ± 0.005 2 1.30 ± 0.005 6 2.70 ± 0.010 7
    椴木 素材 10 2.00 ± 0.008 4 1.80 ± 0.004 0 4.00 ± 0.004 0
    炭化材 10 1.50 ± 0.002 2 1.70 ± 0.014 0 3.30 ± 0.010 7
    单瓣豆 素材 10 1.30 ± 0.001 2 1.80 ± 0.000 8 3.40 ± 0.002 3
    炭化材 10 1.10 ± 0.003 0 1.70 ± 0.001 8 3.30 ± 0.002 4
    说明:表中“±”后数值表示数据的标准差
    下载: 导出CSV

    表  4  3种试材吸水至尺寸稳定时的湿胀率统计分析

    Table  4.   Statistical figures of woods' absolute-dry swelling

    材种 试样数/个 径向湿胀率/% 弦向湿胀率/% 体积湿胀率/%
    奥克榄 素材 10 5.40 ± 0.016 7 6.60 ± 0.010 8 12.90 ± 0.027 4
    炭化材 10 5.00 ± 0.015 0 5.00 ± 0.001 9 11.20 ± 0.032 1
    椴木 素材 10 9.50 ± 0.015 4 10.90 ± 0.019 6 23.80 ± 0.023 6
    炭化材 10 9.30 ± 0.012 7 10.50 ± 0.018 3 21.60 ± 0.013 7
    单瓣豆 素材 10 3.90 ± 0.008 4 7.60 ± 0.004 7 12.60 ± 0.019 4
    炭化材 10 3.90 ± 0.010 2 6.70 ± 0.011 9 12.30 ± 0.013 8
    说明:表中“±”后数值表示数据的标准差
    下载: 导出CSV

    表  5  3种试材的硬度统计分析

    Table  5.   Statistical figures of woods' hardnes

    材种 试样数/个 弦面硬度/N 径面硬度/N 端面硬度/N
    奥克榄 素材 7 2 330.871 ± 906.723 2 328.058 ± 856.433 3 603.304 ± 608.959
    炭化材 7 2 049.777 ± 619.954 2 195.692 ± 662.054 4 008.348 ± 652.936
    椴木 素材 7 2 737.411 ± 431.892 2 854.308 ± 373.424 4 136.273 ± 413.997
    炭化材 7 3 495.514 ± 466.173 3 613.616 ± 430.956 4 667.332 ± 368.028
    单瓣豆 素材 7 2 025.848 ± 579.817 2 285.290 ± 663.906 2 331.451 ± 266.435
    炭化材 5 2 691.328 ± 898.033 2 711.836 ± 936.238 3 507.094 ± 829.350
    说明:表中"±"后数值表示数据的标准差
    下载: 导出CSV
  • [1] 林兰英, 陈志林, 傅峰.木材炭化与炭化物利用研究进展[J].世界林业研究, 2007, 20(5):22-26.

    LIN Lanying, CHEN Zhilin, FU Feng. Research on development of wood carbonization and chercoal's[J]. World For Res, 2007, 20(5):22-26.
    [2] 韩蕾.选防腐木还是炭化木?[J].建材与装修情报, 2007(9):227.

    HAN Lei. Choose preservative wood or carbonized wood?[J]. Build Mat Decor Inf, 2007(9):227.
    [3] 廖立, 涂登云, 李重根, 等.热处理对尾赤桉木材物理力学性能的影响[J].中南林业科技大学学报, 2013, 33(5):128-131.

    LIAO Li, TU Dengyun, LI Chonggen, et al. Effects of heat treatment on physical-mechanical properties of E. urophylla×E. camaldulensis[J]. J Cent South Univ For Technol, 2013, 33(5):128-131.
    [4] 王喆.真空热处理落叶松材性变化规律及其机理研究[D].北京: 中国林业科学研究院, 2017.

    WANG Zhe. Study on Properties and Mechanism of Larch Wood Modified by Vacuum Heat Treatment[D]. Beijing: Chinese Academy of Forestry, 2017.
    [5] 唐荣强, 鲍滨福, 李延军.热处理对杉木颜色变化的影响[J].浙江农林大学学报, 2011, 28(3):455-459.

    TANG Rongqiang, BAO Binfu, LI Yanjun. Heat-treatment influence on Cunninghamia lancoolata dicoloration[J]. J Zhejiang A&F Univ, 2011, 28(3):455-459.
    [6] 蒋燚, 李志辉, 朱积余, 等.红锥家系木材密度等物理性状的遗传及变异性分析[J].中南林业科技大学学报, 2012, 32(11):9-13.

    JIANG Yi, LI Zhihui, ZHU Jiyu, et al. Analysis on genetic and variability of wood density and other physical properties Castanopsis hystrix famliy[J]. J Cent South Univ For Technol, 2012, 32(11):9-13.
    [7] PARK Y, JANG S K, PARK J H, et al. Changes of major chemical components in larch wood through combined treatment of drying and heat treatment using superheated steam[J]. J Wood Sci, 2017, 63(1):1-9.
    [8] 刘洪海, 杨琳, 吴智慧, 等.真空中温热处理对家具用材力学性能及颜色的影响[J].家具, 2016, 37(6):7-10.

    LIU Honghai, YANG Lin, WU Zhihui, et al. Effect of medium thermo-vacuum treatment on mechanical properties and colors of the wood for furniture[J]. Furniture, 2016, 37(6):7-10.
    [9] 曹文, 余友明, 童再康, 等.笔罗子木材物理力学性质的研究[J].浙江林业科技, 2015, 35(4):77-80.

    CAO Wen, YU Youming, TONG Zaikang, et al. Physico-mechanical properties of Meliosma rigida wood[J]. J Zhejiang For Sci Technol, 2015, 35(4):77-80.
    [10] 成俊卿, 杨家驹, 刘鹏.中国木材志[M].北京:中国林业出版社, 1992:761.
    [11] 程大莉.高温热处理杉木木材的工艺及性能研究[D].南京: 南京林业大学, 2007.

    CHENG Dali. The Study on Technics and Properties of Heat Treated Fir Wood[D]. Nanjing: Nanjing Forestry University, 2007.
    [12] BORREGA M, KÄRENLAMPI P P. Hygroscopicity of heat-treated Norway spruce (Picea abies) wood[J]. Eur J Wood Prod, 2010, 68(2):233-235.
    [13] 周建斌, 邓丛静, 蒋身学, 等.炭化木物理力学性能的研究[J].林产工业, 2008, 35(6):28-31.

    ZHOU Jianbin, DENG Congjing, JIANG Shenxue, et al. Study on physical and mechanical property carbonized wood[J]. China For Prod Ind, 2008, 35(6):28-31.
    [14] KUBOJIMA Y, OKANO T, OHTA M. Bending strength and toughness of heat-treated wood[J]. J Wood Sci, 2000, 46(1):8-15.
    [15] 郭飞, 黄荣凤, 吕建雄, 等.热处理温度与时间对马尾松木材脆性的影响[J].木材工业, 2016, 30(3):9-12.

    GUO Fei, HUANG Rongfeng, LÜ Jianxiong, et al. Effect of heat treatment parameters on brittleness of masson pine wood[J]. China Wood Ind, 2016, 30(3):9-12.
    [16] BOONSTRA M J, ACKER J V, TJEERDSMA B F, et al. Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents[J]. Ann For Sci, 2007, 64(7):679-690.
    [17] 史蔷, 鲍甫成, 吕建雄, 等.热处理温度对圆盘豆木材力学性能的影响[J].林业机械与木工设备, 2011, 39(1):27-29.

    SHI Qiang, BAO Fucheng, LÜ Jianxiong, et al. Effect of heat treatment temperature on mechanical properties of okan wood[J]. For Mach Woodwork Equipm, 2011, 39(1):27-29.
  • [1] 孙海燕, 王玉荣.  木材细胞壁超微构造的形成、表征及变化规律 . 浙江农林大学学报, 2019, 36(2): 386-393. doi: 10.11833/j.issn.2095-0756.2019.02.021
    [2] 魏金光, 韦亚南, 鲍敏振, 张亚慧, 余养伦, 李长贵, 于文吉.  辐射松重组木密度对其孔隙率和性能的影响 . 浙江农林大学学报, 2018, 35(3): 519-523. doi: 10.11833/j.issn.2095-0756.2018.03.017
    [3] 夏雨, 牛帅红, 李延军, 夏俐, 马俊敏, 王丽, 余肖红.  常压高温热处理对红竹竹材物理力学性能的影响 . 浙江农林大学学报, 2018, 35(4): 765-770. doi: 10.11833/j.issn.2095-0756.2018.04.023
    [4] 胡梦霄, 杭芸, 黄华宏, 张胜龙, 童再康, 楼雄珍.  杉木木材结晶度的近红外预测模型建立及变异分析 . 浙江农林大学学报, 2017, 34(2): 361-368. doi: 10.11833/j.issn.2095-0756.2017.02.022
    [5] 方益明, 蔺陆军, 鲁植雄, 冯海林.  基于空气耦合超声波的木材无损检测系统研制 . 浙江农林大学学报, 2017, 34(2): 355-360. doi: 10.11833/j.issn.2095-0756.2017.02.021
    [6] 倪茜茜, 祁亨年, 周竹, 汪杭军.  基于高光谱成像技术的红酸枝木材种类识别 . 浙江农林大学学报, 2016, 33(3): 489-494. doi: 10.11833/j.issn.2095-0756.2016.03.017
    [7] 王喆, 孙柏玲, 刘君良, 柴宇博, 曹金珍.  真空热处理日本落叶松木材化学性质的变化 . 浙江农林大学学报, 2016, 33(6): 1052-1057. doi: 10.11833/j.issn.2095-0756.2016.06.018
    [8] 高珊, 王立海, 杨冬辉, 徐文豪.  Sylvatest-Duo装置的探针触式与计示压强对木材超声波测量精度的影响 . 浙江农林大学学报, 2016, 33(5): 875-880. doi: 10.11833/j.issn.2095-0756.2016.05.021
    [9] 陈明及, 吴金绒, 陈骁轶, 邓玉和, 王新洲, 何爽爽, 余旺旺, 张健.  不同因素对竹柳枝桠材重组木性能的影响 . 浙江农林大学学报, 2016, 33(4): 658-666. doi: 10.11833/j.issn.2095-0756.2016.04.015
    [10] 骆静怡, 傅威锐, 潘程远.  木腐真菌的鉴定及对不同木材的腐朽能力 . 浙江农林大学学报, 2015, 32(1): 1-10. doi: 10.11833/j.issn.2095-0756.2015.01.001
    [11] 周驹, 童宏拓, 王琮琮, 黄艳文, 毛兴来, 钱俊.  空心刨花板平压成型技术初探 . 浙江农林大学学报, 2015, 32(5): 770-775. doi: 10.11833/j.issn.2095-0756.2015.05.017
    [12] 周竹, 方益明, 尹建新, 周素茵, 雒瑞森, 郑剑.  高光谱成像技术及其在木材无损检测中的研究进展 . 浙江农林大学学报, 2015, 32(3): 458-466. doi: 10.11833/j.issn.2095-0756.2015.03.020
    [13] 张蕾, 常晓雅, 吴静, 王明枝.  4A分子筛对膨胀型木材阻燃涂料阻燃性能的影响 . 浙江农林大学学报, 2015, 32(1): 156-161. doi: 10.11833/j.issn.2095-0756.2015.01.023
    [14] 郭东强, 叶露, 周维, 刘媛, 陈健波, 卢翠香, 项东云.  2个种源邓恩桉木材纤维特性及变异 . 浙江农林大学学报, 2014, 31(4): 502-507. doi: 10.11833/j.issn.2095-0756.2014.04.002
    [15] PHAMTuong Lam, 王新洲, 邓玉和, 董葛平, TRANMinh Toi, CAOQuoc An.  废弃杨木水泥模板纤维特性及纤维板的研究 . 浙江农林大学学报, 2014, 31(6): 940-946. doi: 10.11833/j.issn.2095-0756.2014.06.017
    [16] 余乐, 吕建雄, 李贤军, 徐康, 吴义强, 蒋佳荔.  X射线扫描法和切片法测量干燥过程中杉木含水率分布的比较研究 . 浙江农林大学学报, 2013, 30(4): 543-547. doi: 10.11833/j.issn.2095-0756.2013.04.013
    [17] 张叶田, 何礼平.  竹集成材与常见建筑结构材力学性能比较 . 浙江农林大学学报, 2007, 24(1): 100-104.
    [18] 曾松伟, 刘敬彪, 周巧娣, 夏霞.  基于MSP 430 的木材干燥窑测控系统 . 浙江农林大学学报, 2006, 23(6): 673-677.
    [19] 邵千钧, 徐群芳, 王伟龙.  木材干燥过程控制策略与方法的研究 . 浙江农林大学学报, 2003, 20(3): 307-310.
    [20] 姜志宏, 许益柳, 祝迎春, 李向帆, 孔才源.  浸胶量与竹材层压板物理力学性能的关系 . 浙江农林大学学报, 1997, 14(4): 350-354.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2019.01.022

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2019/1/177

图(5) / 表(5)
计量
  • 文章访问数:  2828
  • HTML全文浏览量:  633
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-02
  • 修回日期:  2018-05-10
  • 刊出日期:  2019-02-20

负压轻炭化木材物理力学性能

doi: 10.11833/j.issn.2095-0756.2019.01.022
    基金项目:

    国家自然科学基金资助项目 31800471

    国家木竹产业技术创新战略联盟科研计划项目 TIAWB201708

    南京林业大学大学生创新训练计划项目 2016NFUSPITP179

    作者简介:

    薛紫荞, 从事家具用材改性研究。E-mail:809569841@qq.com

    通信作者: 王雪花, 讲师, 博士, 从事木/竹质建筑材料研究。E-mail:xuehua3099@sina.com
  • 中图分类号: TS652;S781.29

摘要: 对比了奥克榄Aucoumea klaineana,椴木Tilia europaea,单瓣豆Monopetalanthus sp.等3种木材在同一炭化条件下物理力学性能的变化,探究负压轻炭化处理木材的可行性与实际效果。将3种木材分别置于真空炭化箱内以160℃,0 MPa的条件处理3.0 h,然后将木材按照国标规定的木材物理力学试材锯解及试样截取方法加工,之后分别测量木材的密度、色差、冲击韧性、抗弯强度、抗弯弹性模量、硬度、干缩率和湿胀率。结果表明:在该炭化工艺下单瓣豆的体积干缩系数降低了16.00%,尺寸稳定性有较大改善;抗弯强度增加了18.00%,径面、弦面和端面硬度分别增加了19.00%,33.00%和50.00%,冲击韧性损失24.00%。负压轻炭化能够在一定程度上改善木材的尺寸稳定性,并且使其物理力学性能不受太大损失。

English Abstract

薛紫荞, 王雪花, 周亚琴, 陈梦奇, 黄琼涛. 负压轻炭化木材物理力学性能[J]. 浙江农林大学学报, 2019, 36(1): 177-182. doi: 10.11833/j.issn.2095-0756.2019.01.022
引用本文: 薛紫荞, 王雪花, 周亚琴, 陈梦奇, 黄琼涛. 负压轻炭化木材物理力学性能[J]. 浙江农林大学学报, 2019, 36(1): 177-182. doi: 10.11833/j.issn.2095-0756.2019.01.022
XUE Ziqiao, WANG Xuehua, ZHOU Yaqin, CHEN Mengqi, HUANG Qiongtao. Physical and mechanical properties of low thermo-vacuum treated wood[J]. Journal of Zhejiang A&F University, 2019, 36(1): 177-182. doi: 10.11833/j.issn.2095-0756.2019.01.022
Citation: XUE Ziqiao, WANG Xuehua, ZHOU Yaqin, CHEN Mengqi, HUANG Qiongtao. Physical and mechanical properties of low thermo-vacuum treated wood[J]. Journal of Zhejiang A&F University, 2019, 36(1): 177-182. doi: 10.11833/j.issn.2095-0756.2019.01.022
  • 炭化是一种常见的木材化学改性技术[1],相对其他改性方法,炭化处理具有无毒性、环境污染小、工艺简单等优点。出于降低材料处理成本的考虑,炭化材主要用于户外用材,室内材应用较少[2]。奥克榄Aucoumea klaineana,椴木Tilia europaea,单瓣豆Monopetalanthus sp.是如今市场上3种常见的家具用材,其色泽均匀、纹理美观,但应用过程中也存在易变形、易腐蚀等问题,严重影响了木材的实用价值和产品附加值。探究一种低成本、适于室内家具用材的热处理工艺,对于延长家具使用寿命、提高产品附加值意义重大。炭化处理的实质,是通过减少木材组分中吸水羟基的含量,降低木材的吸湿性,以提高其尺寸稳定性[3]。常用的高温炭化易出现使材色过深、大幅降低木材力学性能等问题[4-5]。为了平衡这2方面的问题,笔者提出“负压轻炭化”的工艺理念,即炭化温度不超过之前大部分炭化实验常用的最低温度,炭化箱内的气压低于1个标准大气压。为了探究奥克榄、椴木、单瓣豆木材在使用过程中尺寸稳定性并避免其材色和力学性能受太大影响,笔者以奥克榄、椴木、单瓣豆木材为研究对象,在较低温度、负压条件下进行处理,并研究该处理工艺对这3种木材物理力学性能的影响,以为室内用材炭化工艺提供参考。

    • 先将试材在电鼓风干燥箱中干燥至含水率稳定,随后进行炭化,前期缓慢升温,最终以炭化箱内160 ℃,0 Mpa实验条件炭化3.0 h。

    • 炭化完成后用电子万能材料试验机(AG-IC/100KN)、摆锤式冲击试验机(JBS-300S)色差仪等测量木材的物理力学性能。本研究所测物理力学性质包括全干密度,色差,冲击韧性,抗弯强度,抗弯弹性模量,硬度(径面硬度、弦面硬度、端面硬度),气干湿胀率,吸水至尺寸稳定的湿胀率,气干干缩率,全干干缩率在内的共11个性状。

      性能测试分别按照GBT 1933-2009《木材密度测定方法》、GBT1940-2009《木材冲击韧性试验方法》、GBT1936.1-2009《木材抗弯强度试验方法》、GBT1936.2-2009《木材抗弯弹性模量测定方法》、GBT1941-2009《木材硬度试验方法》、GBT1934.2-2009《木材湿胀性测定方法》、GBT1932-2009《木材干缩性测定方法》进行。色差测量取得数值后使用亨特色差公式计算。

    • 图 1可看出:3种试材炭化后的全干密度均有所降低,其中椴木和单瓣豆的全干密度变化不大,奥克榄的密度降低最为显著,由0.489 g·cm-3下降至0.362 g·cm-3,降幅达26.00%。与之相比,通过3.0 h,160 ℃真空热处理的日本落叶松Larix kaempferi全干密度达到0.667 g·cm-3,较未处理材下降了0.74%[4];来自广西的红锥Castanopsis hystrix家系木材的全干密度为0.611 g·cm-3[6]。本研究处理后的试材全干密度相对较低。

      图  1  不同试材的素材与炭化材密度对比图

      Figure 1.  Density of treated and control samples

      纤维素、半纤维素、木质素是构成木材的主要成分,当受到热量作用,这三大成分产生不同程度的降解[7],因此,炭化材的密度比素材均有所降低。木材质量下降,但同时木材体积也在收缩,当木材质量下降的程度超过木材体积收缩的程度时,木材密度就会降低。

      负压轻炭化处理前后木材的色差如图 2所示。通过色差仪测得试材炭化前后的Lab值,后通过亨特色差公式ΔE=[(ΔL)2+(Δa)2+(Δb)2]1/2计算[8]。由图 2可得:3种木材通过3.0 h,160 ℃,0 Mpa炭化处理材色均有较大变化。其中奥克榄的材色变化相对较小,椴木的材色变化最大。

      图  2  不同试材炭化前后色差统计图

      Figure 2.  Color deviation of treated and control samples

      当木材的含水率低于纤维饱和点时,木材的尺寸随含水率升降而增减[9]。木材的涨缩会造成木制品开裂、翘曲变形等缺陷,因此,木材的尺寸稳定性是在利用木材时所需考虑的重要因素。本研究从干缩性和湿胀性2个方面的指标来研究奥克榄、椴木和单瓣豆的尺寸稳定性。首先,结合表 1表 2可看出:炭化后椴木体积干缩系数达0.52,根据木材材性分级表[10]属中级(0.46~0.55);而奥克榄炭化后的体积干缩系数未改变,仍为0.35,属小级(≤0.45);同样,单瓣豆炭化后的体积干缩系数由0.44降至0.37,但级别不变,属小级。比较炭化前后木材干缩系数变化的程度,可以发现在相同炭化条件下,奥克榄的干缩系数无变化,椴木的干缩系数仅降低了1.00%,只有单瓣豆的干缩系数有明显降低,降低比例为16.00%。以160 ℃,2.0 h热处理的杉木气干体积干缩率下降了29.76%、全体积干缩率下降了19.37%;以190 ℃,3.0 h热处理的杉木气干体积干缩率下降了35.61%,全干体积干缩率下降了24.18%[11]。本研究处理后的单瓣豆气干体积干缩率下降了21.30%,全干体积干缩率下降了10.60%,降低幅度较之略小。

      表 1  3种试材的气干干缩率统计分析

      Table 1.  Statistical figures of woods' air-dry shrinkage

      材种 试样数/个 径向干缩率/% 弦向干缩率/% 体积干缩率/%
      奥克榄 素材 10 3.20 ± 0.009 6 3.20 ± 0.008 6 6.30 ± 0.005 2
      炭化材 10 3.10 ± 0.005 9 3.20 ± 0.005 8 6.80 ± 0.005 1
      椴木 素材 10 4.60 ± 0.005 9 5.90 ± 0.005 7 10.90 ± 0.006 9
      炭化材 10 4.50 ± 0.001 7 6.10 ± 0.003 8 10.30 ± 0.004 9
      单瓣豆 素材 10 2.70 ± 0.004 9 5.60 ± 0.005 1 8.90 ± 0.006 1
      炭化材 10 2.30 ± 0.004 6 4.40 ± 0.008 7 7.00 ± 0.009 8
      说明:表中“±”后数值表示数据的标准差

      表 2  3种试材的全干干缩率统计分析

      Table 2.  Statistical figures of woods' absolute-dry shrinkage

      材种 试样数/个 径向干缩率/% 弦向干缩率/% 体积干缩率/% 体积干缩系数/%
      奥克榄 素材 10 5.30 ± 0.012 1 5.00 ± 0.012 7 10.40 ± 0.004 4 35 ± 0.011 4
      炭化材 10 5.10 ± 0.008 0 5.10 ± 0.008 9 11.00 ± 0.014 4 35 ± 0.022 7
      椴木 素材 10 7.10 ± 0.003 3 8.10 ± 0.022 6 16.00 ± 0.008 9 53 ± 0.024 0
      炭化材 10 7.10 ± 0.002 0 8.90 ± 0.004 3 15.60 ± 0.004 8 52 ± 0.016 2
      单瓣豆 素材 10 4.50 ± 0.005 2 8.30 ± 0.009 4 13.20 ± 0.011 4 44 ± 0.016 2
      炭化材 10 4.30 ± 0.011 9 7.10 ± 0.010 1 11.80 ± 0.016 9 37 ± 0.038 4
      说明:表中“±”后数值表示数据的标准差

      表 3表 4可以看出:炭化对于3种木材的湿胀率均有一定的改善。通过对干缩率和湿胀率变化的研究可以发现,在实验设置的炭化条件下单瓣豆的尺寸稳定性改善最为显著。热处理使木材细胞壁的结构更加紧密,炭化后的木材细胞壁中纤维素与半纤维素无定型区域形成了不可逆的氢键,因此,之前一些用于吸水的部位在再次湿润时不能与水分子结合[12]

      表 3  3种试材的气干湿胀率统计分析

      Table 3.  Statistical figures of woods' air-dry swelling

      材种 试样数/个 径向湿胀率/% 弦向湿胀率/% 体积湿胀率/%
      奥克榄 素材 10 1.60 ± 0.003 3 1.50 ± 0.004 2 3.70 ± 0.003 7
      炭化材 10 1.20 ± 0.005 2 1.30 ± 0.005 6 2.70 ± 0.010 7
      椴木 素材 10 2.00 ± 0.008 4 1.80 ± 0.004 0 4.00 ± 0.004 0
      炭化材 10 1.50 ± 0.002 2 1.70 ± 0.014 0 3.30 ± 0.010 7
      单瓣豆 素材 10 1.30 ± 0.001 2 1.80 ± 0.000 8 3.40 ± 0.002 3
      炭化材 10 1.10 ± 0.003 0 1.70 ± 0.001 8 3.30 ± 0.002 4
      说明:表中“±”后数值表示数据的标准差

      表 4  3种试材吸水至尺寸稳定时的湿胀率统计分析

      Table 4.  Statistical figures of woods' absolute-dry swelling

      材种 试样数/个 径向湿胀率/% 弦向湿胀率/% 体积湿胀率/%
      奥克榄 素材 10 5.40 ± 0.016 7 6.60 ± 0.010 8 12.90 ± 0.027 4
      炭化材 10 5.00 ± 0.015 0 5.00 ± 0.001 9 11.20 ± 0.032 1
      椴木 素材 10 9.50 ± 0.015 4 10.90 ± 0.019 6 23.80 ± 0.023 6
      炭化材 10 9.30 ± 0.012 7 10.50 ± 0.018 3 21.60 ± 0.013 7
      单瓣豆 素材 10 3.90 ± 0.008 4 7.60 ± 0.004 7 12.60 ± 0.019 4
      炭化材 10 3.90 ± 0.010 2 6.70 ± 0.011 9 12.30 ± 0.013 8
      说明:表中“±”后数值表示数据的标准差
    • 通过图 3图 4可以发现:经过炭化的奥克榄较未炭化的试材其抗弯强度和抗弯弹性模量均略有减小,其中抗弯强度减小了6.00%,抗弯弹性模量减小了7.00%;而椴木和单瓣豆的抗弯强度和抗弯弹性模量则均有增加,但椴木的抗弯强度仅增加4.00%,说明炭化条件对其影响不显著[13];单瓣豆的抗弯强度增加了18.00%,弹性模量增加了9.00%。

      图  3  不同试材素材与炭化材抗弯强度对比

      Figure 3.  MOR of treated and control samples

      图  4  不同试材的素材与炭化材抗弯弹性模量对比

      Figure 4.  MOE of treated and control samples

      在之前的多项研究中都曾提及这种现象,即木材的抗弯强度随着炭化温度的提升先升高后下降,因此,在相对较低的炭化温度下木材的抗弯强度会有所提升。例如扁柏Platycladus orientalis木在100~150 ℃,2.0~100.0 h的热处理条件下抗弯强度均较素材有所提高;北美云杉Picea sitchensis在空气和氮气中以160 ℃,2.0 h或160 ℃,4.0 h的条件进行热处理,其抗弯强度均有所增加[14];马尾松Pinus masoniana通过170 ℃,2.0~6.0 h的蒸汽热处理后静态弯曲应力均有所提升[15]

      表 5可知:奥克榄炭化材的径面和弦面硬度略有减少,端面硬度有所增加;而椴木和单瓣豆的径、弦、端向硬度均有所增大。出现这种现象是因为细胞壁中的纤维素和半纤维素的分子结构在高温的作用下发生改变,纤维素分子结晶度增加,使木材表面硬度变大[3]

      表 5  3种试材的硬度统计分析

      Table 5.  Statistical figures of woods' hardnes

      材种 试样数/个 弦面硬度/N 径面硬度/N 端面硬度/N
      奥克榄 素材 7 2 330.871 ± 906.723 2 328.058 ± 856.433 3 603.304 ± 608.959
      炭化材 7 2 049.777 ± 619.954 2 195.692 ± 662.054 4 008.348 ± 652.936
      椴木 素材 7 2 737.411 ± 431.892 2 854.308 ± 373.424 4 136.273 ± 413.997
      炭化材 7 3 495.514 ± 466.173 3 613.616 ± 430.956 4 667.332 ± 368.028
      单瓣豆 素材 7 2 025.848 ± 579.817 2 285.290 ± 663.906 2 331.451 ± 266.435
      炭化材 5 2 691.328 ± 898.033 2 711.836 ± 936.238 3 507.094 ± 829.350
      说明:表中"±"后数值表示数据的标准差

      分析图 5可以看出:3种木材通过炭化冲击韧性均有所降低,其中冲击韧性损失最为严重的是奥克榄,损失率高达53.00%;单瓣豆次之,损失率达到24.00%;椴木损失率最低,仅12.00%。奥克榄炭化后冲击韧性显著降低和其密度大幅降低有直接的关系[16]

      图  5  不同试材的素材与炭化材冲击韧性对比图

      Figure 5.  Toughness of treated and control samples

      热处理的温度较低时,木材细胞壁中的半纤维素由于热稳定性较差,发生部分的结构重组或降解,分子链中的羟基脱落。纤维素无定型区域内水分散失以及相邻纤维素表面靠拢使纤维素分子链排列更加紧密,纤维素分子链之间的羟基发生“架桥”反应,使纤维素分子结晶度增加。从而使木材力学性能提升。随着热处理温度升高,一方面木材细胞壁中半纤维素和木素非结晶性高聚物发生玻璃化转变,纤维素、半纤维素和木素之间的联结被破坏,降低了木材的力学强度。另一方面,半纤维素剧烈降解产生大量己酸,催化了纤维素降解,纤维素结晶度与聚合度降低。纤维素、半纤维素和木素的大量降解使木材力学强度下降[17]

    • 3.0 h,160 ℃,0 MPa的负压热处理降低了3种木材的全干密度,使材色变深,尺寸稳定性有所提升,其中对于单瓣豆的尺寸稳定性改善最大,使其体积干缩系数降低了16.00%。

      实验设置的热处理环境对于3种木材的冲击韧性均有所降低,其中奥克榄均减弱最多。同时热处理使奥克榄的抗弯强度有所降低,对椴木的抗弯强度无影响,使单瓣豆的抗弯强度有所提升,增加了18.00%。木材力学性能的变化与木材的密度有紧密关联,其中奥克榄素材本身素材密度较椴木、单瓣豆偏低,这意味着木材内部孔隙较多,多孔的结构一方面影响木材的力学性能,另一方面使木材热处理时直接受热的面积增大,吸收热量更为迅速,导致在相同炭化条件下的奥克榄力学性能降低更多。而热处理可一定程度上增加木材的硬度,在3种试材中单瓣豆的端面硬度增加最为显著,增幅达50.00%。

      综合以上多种物理力学性能指标分析,在实验设置的炭化条件下单瓣豆的尺寸稳定性改善最多而力学性能损失较少。可以表明在3.0 h,160 ℃,0 MPa的炭化条件可以使木材的尺寸稳定性提升,同时较小程度地损失其力学性能。

参考文献 (17)

目录

    /

    返回文章
    返回