浙 江 林 学 院 学 报 1999, **16**(4): 346~352 Journal of Zhejiang Forestry College

文章编号: 1000-5692(1999)04-0346-07

长江护岸林欧美杨无性系混合造林研究

傅 军,钱 滕,黄荣来

(安徽省林业厅,安徽合肥 230001)

摘要:为提高长江护岸林的生长量,减少虫害,进行了杨树多系混合造林研究。结果表明:沿江护岸林欧美杨多系混合造林较单系造林生长量和年利润率均提高 15%以上,天牛虫株率控制在 3%以内;选育出 4 个优良无性系,材积生长量较 1-69 杨(对照)提高 $18.4\%\sim47.5\%$ 。对参试欧美杨无性系进行了生长阶段和生长等级的划分。表 7 参 4

关键词:河岸防护林;欧美杨无性系;多系混合造林;生产力;蛀干害虫;综合 防治

中图分类号: S727.26; X171.1 文献标识码: A

杨树是安徽省长江护岸林最主要树种,在保卫长江大堤,维护生态环境,提供沿江群众生产和生活用材等方面,有着极其重要的意义。但就护岸林的发展来看,还存在许多问题,突出的是品系单一,病虫危害严重,生产力水平低。现有杨树林分大多为 I-69 杨纯林,遗传基础窄,存在着巨大的潜在危险。如 50 年代,安徽省发展加杨(Populus canadenss)和美杨(P· deltoides),70 年代发展大官杨(P· dakuensis),均因无性系单一和病虫猖獗导致失败。

我们曾经试图通过营造混交林来解决严重的病虫危害问题。但由于长江护岸林欧美杨常生长于水湿立地条件,生长速度极快,很难找到合适的混交树种。因此,从 1990 年起,我们本着简便易行和经济实用的原则,充分利用杨树不同无性系间地下一地上,时间一空间序列的差异,扬长避短,发挥不同无性系间相互促进的作用,进行定向培育配套技术、无性系选择和病虫防治等综合研究,在不增加成本的前提下,使得林分产量大幅度提高,基本解决了长期以来困扰杨树发展的蛀干害虫危害问题。

1 材料与方法

1.1 研究材料

参试无性系共 26 个,包括从中国林科院引进的中林系列(中林 490,中林 487 等)9 个

收稿日期, 1999-07-16; 修回日期, 1999-09-22

作者简介: 傅军(1958-), 男, 安徽滁州人, 副研究员, 硕士, 从事造林和防护林研究。

(C)1994-2022 China Academic Journal Electronic Publishing House. All rights reserved. http://www

无性系,从南京林业大学引进的 300 系列 (367, 301 等) 13 个无性系,安徽省通过 I -69 × 63 杂交育种培育出的 A^1 , A^2 以及安徽省从 70 年代引进的 I -69 [cv . "Lux" (I -69/55)] 和 I -72 [cv . "San Martino" (I -72/58)] $I^{[1]}$ 。

1.2 研究方法

多系混合造林共用 26 个无性系。对照为单系造林,采用目前安徽省主栽无性系 I -69 。 1991 年春造林,苗木全部用 1 年生 I 级苗,5 $\mathbf{m} \times 6$ \mathbf{m} ,3 株一小区,随机配置,3 次重复。 每年定期进行生长测量和病虫监测。

2 结果与分析

2.1 通过研究发现,在经营措施相同的情况下,6年生多系混合造林的胸径和单株材积生长量与单系造林存在显著差异,而树高生长差异不明显(表1)。多系混合造林比单系造林林分生长量提高15%以上,林分环境稳定,林木抗性增强,材质优良,年利润率提高15%以上,经济效益大幅度提高(表2)。

表 1 多系混合造林和单系造林方差分析表

Table 1	Variance analysi	s between multi	clones and one	clone planting of poplar

变差	离差平方和	自由度	均方	F	$F_{0.05}$	分析结论
组间	27.063 0	1	27.063 0	10.36	4.11	
组内	96.627 0	37	2.611 5			差异显著
合计	123.690 4	38				
组间	0.025 4	1	0.025 4	0.01	4.11	
组内	79.615 2	37	2.151 8			差异不显著
合计	79.640 6	38				
组间	0.012 4	1	0.012 4	5.21	4.11	
组内	0.088 0	37	0.002 4			差异显著
合计	0.100 4	38				
	组组合 组组合 组组合 组组内计 间内计 间内计	组间 27.063 0 组内 96.627 0 合计 123.690 4 组间 0.025 4 组内 79.615 2 合计 79.640 6 组间 0.012 4 组内 0.088 0	组间 27.063 0 1 组内 96.627 0 37 合计 123.690 4 38 组间 0.025 4 1 组内 79.615 2 37 合计 79.640 6 38 组间 0.012 4 1 组内 0.088 0 37	组间 27.063 0 1 27.063 0 组内 96.627 0 37 2.611 5 合计 123.690 4 38 组间 0.025 4 1 0.025 4 组内 79.615 2 37 2.151 8 合计 79.640 6 38 组间 0.012 4 1 0.012 4 组内 0.088 0 37 0.002 4	组间 27.063 0 1 27.063 0 10.36 组内 96.627 0 37 2.611 5 合计 123.690 4 38 组间 0.025 4 1 0.025 4 0.01 组内 79.615 2 37 2.151 8 合计 79.640 6 38 组间 0.012 4 1 0.012 4 5.21 组内 0.088 0 37 0.002 4	组间 27.063 0 1 27.063 0 10.36 4.11 组内 96.627 0 37 2.611 5 6计 123.690 4 38 组间 0.025 4 1 0.025 4 0.01 4.11 组内 79.615 2 37 2.151 8 6计 79.640 6 38 组间 0.012 4 1 0.012 4 5.21 4.11 组内 0.088 0 37 0.002 4

表 2 多系混合造林与单系造林经济效益比较

Table 2 Economic benefits between multi-clone and one-clone planting

蛋白	蓄积/	原木/	毛收入/	成	本/	原木纯收入	年纯收入/	利润率	年利润率
项目	$(m^3 \cdot hm^{-2})$	$(\text{m}^3 \cdot \text{hm}^{-2})$	(元•hm ⁻²)	(元·m ⁻³)	(元•hm ⁻²)	$/(元 \cdot hm^{-2})$	(元•hm ⁻²)	/%	/%
多系造林	172.5	121	52 635	108	13 068	39 567	3 297	303	25.3
单系造林	150.5	105	45 675	120	12 600	33 075	2 756	263	21.0
	+22	+16	+6 960	-12	+468	+6492	+541	+13	+17

多系混合造林能提高林分生长量是由于: ①不同无性系的分根角、根幅、吸收根分布范围和根生物量都不尽相同,将它们混栽在一起,有利于充分利用土壤养分和水分。②欧美杨南方型无性系树冠有成层性的特点。不同无性系的层高和树冠大小等都有差异,可以相互镶嵌,减少株间竞争。③不同无性系的生长节律不同。其生长开始期、速生期、生长高峰期和生长结束期等均有差异。也减少了对光热水肥的剧烈竞争。④各无性系的生物学特性有所差

- 异,形成的多系林分较单系林分稳定,林分抗性增强,有利于树木生长[2]。
- 2.2 选育出适合安徽省推广的4个欧美杨南方型优良无性系:中林 490 (cv·"Zhonglin- 490 "),中林 487 (cv·"Zhonglin- 487 "),中林 715 (cv·"Zhonglin- 715 "),中林 789 (cv·"Zhonglin- 789 ")。它们的材积生长量分别较对照 I- 69 杨提高 $^{47.5}$ %, $^{21.8}$ %, $^{18.8}$ %和 $^{18.4}$ %(表3),干形通直圆满,抗病虫和适应能力强,木材基本密度、气干密度、纤维长度、纤维长宽比和壁腔比等与 I- 69 杨相当,能满足造纸原料的要求,纤维长度和宽度分布较均匀,为制浆生产提供较好条件I
- 2.3 采用逐步聚类将 26 个无性系划分成 5 类,即最好、较好、中等、较差和差 5 个等级 (表 3)。生长最好等级的无性系为中林 490。生长较好等级包括中林 487、中林 715、中林 789 和 I -72 等 9 个无性系。当前安徽省杨树主栽无性系 I -69 杨仅处在中等等级。因此,欧美杨生产力水平提高潜力很大。

表 3 各无性系生长与 1-69 比较及生长分级

Table 3 Comparison of poplar clones and growth classification

无性系	胸径/cm	树高/m	单株材积/m³	单株材积与 I-69比较/%	生长等级划分
中林 490	22.47	17.5	0.278 4	47.5 * *	最好
中林 487	20.50	17.5	0.229 9	21.8*	
中林 715	20.54	16.6	0.224 2	18.8*	
中林 789	20.28	16.8	0.223 5	18.4*	
中林 265	20.16	16.9	0.218 2	15.6*	
307	20.02	16.9	0.213 5	13.1	较好
I -72	20.00	16.9	0.2128	12.8	
308	19.83	16.9	0.211 9	12.3	
303	19.61	17.3	0.209 1	10.8	
中林 254	19.61	17.0	0.207 6	10.0	
中林 340	19.10	17.0	0.197 4	4.6	
中林 783	19.19	16.7	0.197 2	4.5	
302	19.01	16.7	0.192 1	1.8	
中林 491	18.96	16.6	0.191 8	1.6	
I-69 (対照)	18.63	17.3	0.188 7	0.0	
\mathbf{A}^2	18.83	16.7	0.187 7	-0.5	中等
305	18.53	16.5	0.181 7	-3.7	
367	18.32	16.7	0.178 1	-5.6	
309	18.20	16.7	0.178 0	-5.7	
366	18.34	16.3	0.174 9	-7.3	
304	18.08	16.4	0.1708	-9.5	
313	17.69	16.3	0.163 0	-13.6	
316	17.38	16.0	0.156 0	-17.3	
315	17.10	16.1	0.151 5	-19.7*	较差
\mathbf{A}^{1}	15.85	16.8	0.135 2	-28.4*	
301	14.77	14.5	0.111 1	-41.4*	差

- 2.4 多系混合造林形成的林分环境稳定,林内益鸟益虫多,树木生长健壮,提高了树木本身的抗虫性。所引进的无性系大多抗虫性较强,加上选择无虫源造林地和苗木,栽植引诱树,人工毒签防治等综合防治措施,解决了蛀干害虫危害的难题,将天牛虫株率稳定控制在3%以内,提高了木材等级和价格。
- 2.5 拟合各无性系的生长过程,划分了欧美杨生长阶段。经过 Logistic 模型分析,将安徽省沿江地区欧美杨生长划分为 3 个阶段(表 4):快速增长期(0 ~ 1 a)、速生期(2 ~ 5 a)和稳定生长期(6 a 以后),为欧美杨科学营林提供了依据。

表 4 欧美杨生长阶段划分

Table 4 Growth stages of poplar

项目	最小值	速生期拐点	生长高峰	速生期终点	最大值	
X 轴	0	(a-1.317)/b	a/b	(a+1.317)/b	无穷大	
Y 轴	K/[1+EXP(a)]	K/[1+EXP(1.317)]	K/2	K/[1+EXP(-1.317)]	K	
曲线形状	1	-凹	拐点	下凹		
生长阶段 林龄/a	快速增长期		速生期 2~5	稳定生长期		
/// 图	0 -1		4 J	<i>=</i> 0		

2.6 总结出欧美杨定向培育配套技术模式。结合防浪护岸,根据不同培育目的,将立地选择、整地、苗木、造林、整形、修枝、间作、施肥、松土锄草和病虫防治等环节的各项技术措施进行合理的组装配套(表 5)。

表 5 欧美杨长江护岸林定向培育配套技术

Table 5 Directional culture technology of poplar

			Table 5 Directional culture technology of poplar
年度	时间	技术措施	内 容 和 规 格
	全年	良种壮苗	中林 490、487、715、789、265、254、240、783、491, I-72, 307, 308, 303, 302, I-69 等混合造林 1年生 I 级苗或 2 年生根 1 年生干苗
造林前		造林地选择	冲积物上形成的潮土,质地砂壤 $^-$ 轻壤为佳,地下水位 1 2 $^{}$ $^{}$ $^{}$ $^{}$ 2 2 4 4 4 4 4 4 4 4
1 a	秋冬	整地	全面深翻整地,深度 $30{\sim}40$ cm;在芦苇从生的造林地,深度要达 $40{\sim}50$ cm;整地后依造林密度挖穴,规格一般 0.6 m $\times0.6$ m $\times0.8$ m;在土壤粘重的地方应采用 1.0 m $\times1.0$ m $\times1.0$ m \times 1.0
		施基肥	根据土壤肥力,一般沿江需施磷肥和有机肥(磷肥 $0.5~{ m kg}$ • $\dot{\gamma}^{-1}$, 厩肥 $50~{ m kg}$ • $\dot{\gamma}^{-1}$)
造林当年	深秋,初 冬或早春	造林密度 林 造林方法	纸浆材和纤维板材: >1000 株 \cdot hm $^{-2}$ 檩条材: >400 株 \cdot hm $^{-2}$ 火柴杆和部分胶合板材: 333 株 \cdot hm $^{-2}$ 胶合板和锯材: 250 株 \cdot hm $^{-2}$ 根据地下水位、苗木质量、种条需求量、地表植被、水淹状况和管理水平等确定; 栽前浸泡 $2\sim3$ d: 在风大和季节性淹没的地方,靠穴壁深栽
	造林后	整形,清干	剪去或短截影响主枝生长的竞争枝 (双头或多头),抹去 1.5 m 以下的芽
	生长季节	林下间作	适宜间作小麦、油菜和豆类等矮秆作物

续表 5

左京	n-1-6-1	11 D. 11 24	also are the late
年度	时间	技术措施	
	4~8月	施肥松土锄草	根据土壤和叶片养分分析确定施肥量。氮磷钾混合效果好;一般施肥量 $250\sim500~{\rm g}\cdot{\rm kt}^{-1}\cdot{\rm a}^{-1}$;如林下间作进行了施肥,可不单独对树木施肥;超短轮伐期林分应增加施肥量 松土锄草 $1\sim2$ 次;如林下间作,可不再单独进行
	根据害虫 种类和防 治方法等 确定	病虫防治	蛀干害虫 主要是桑天牛. ①清除周围桑树构树等桑科乔灌木: ②每公顷保留几株桑树构树作诱饵树, 6~8 月每日捕捉天牛成虫; ③3 月下旬和 9 月下旬用毒签或注射药物防治。食叶害虫 主要是杨扇舟蛾和杨小舟蛾, ①根施呋喃丹; ②食叶害虫大量发生时,用 90% 敌百虫 400~1000 倍或 80% 乐果 300 倍喷洒
	落叶到发 芽期间	修枝	修剪竞争枝及粗大枝,解放弱枝;冠干比 3:2;紧靠树干表面截枝,切口与侧枝垂直;修枝不要撕裂树皮
	全年	间作	林分郁闭前,可间作小麦、油菜和豆类等;林分郁闭后,间作生姜、中药材和 平菇等耐荫作物
	萌发后	松土锄草	进行1次;如间作,可不单独进行
造林后 2~3 a	4~8月	追肥	同造林当年;根据土壤肥力状况,不一定每年进行
2 Ja	虫家发生 季节	虫害防治	同造林当年
	休眠期	修枝	同造林当年
	萌发后	松土	每年1次,至主伐前1a结束
	虫害发生 季节	虫害防治	主干枝下高8m前,虫害防治同前;枝下高达8m后,天牛防治可以停止
	4~8月	追肥	一般进行到轮伐期一半年龄;纸浆材和纤维板材应进行至主伐前 1 a
4 a 至主伐	休眠期	修枝	培育纸浆和纤维板材可在主伐前 2 a 停止修枝;檩条材可在 5 a 左右停止修枝;火柴杆材和部分胶合板材可将枝下高修到 8 m,冠干比 $^{1/2}$;胶合板和锯材将主干达 10 m 以下的侧枝修净,冠干比 $^{1/2}$
	主伐	纸浆和纤	$3\sim5$ a $6\sim7$ a $8\sim10$ a $11\sim15$ a

此表适用于沿江地区

- 2.7 不同造林方法对于胸径和材积生长没有显著影响,而对树高生长影响显著。植苗造林、不同高度的截干造林和不同深度的插干造林对干形有一定的影响(表 6)。
- 2.8 很多文献提出2年生根1年生干苗造林生长量比1年生苗大。但根据1年生苗和2年生根1年生干苗造林,胸径、树高和单株材积不存在显著差异。1年生苗缓苗期短,成活率高,抗风力强,生长迅速,价格便宜,易于运输。因此,除一些季节性淹水较深等特殊情况外,造林苗木可用1年生 [级苗(表7)。

3 结论和建议

3.1 欧美杨南方型无性系混合造林,林分稳定,牛长量大,抗性强,材性优良,技术简单,

表 6 不同造林方法方差分析

Table 6 Variance analysis of different planting methods

项目	变差	离差平方和	自由度	均方	F	$F_{0.05}$	分析结论
胸径	组间	46.72	8	5.84	1.81	2.06	
方差	组内	254.86	79	3.23			差异不显著
分析	合计	301.6	87				
树高	组间	8.57	8	1.07	2.31	2.06	
方差	组内	36.55	79	0.46			差异显著
分析	合计	45.12	87				
单株	组间	0.0167	8	0.0021	1.63	2.06	
材积	组内	0.1011	79	0.0013			差异不显著
分析	合计	0.1178	87				

表 7 1年生苗和 1年生根 2年生干苗造林方差分析

Table 7	Variance	analysis	of	seedlings	with	different	age

			-	O	0		
项目	变差	离差平方和	自由度	均方	F 值	$F_{0.05}$	分析结论
胸径	组间	0.0029	1	0.0029	0.00	4.13	
方差	组内	119.766 6	34	3.522 6			差异不显著
分析	合计	119.769 5	35				
树高	组间	8.0010	1	0.0010	0.00	4.13	
方差	组内	46.740 2	34	1.374 7			差异不显著
分析	合计	46.741 2	35				
单株	组间	0.000 04	1	0	0.02	4.13	
材积	组内	0.087 68	34	0.002 5			差异不显著
分析	合计	0.087 73	35				

经济效益显著。应在今后的沿江护岸林中应大力推广这一技术,以彻底改变目前造林无性系单一的状况。多系混合造林应选择高生长差别不大的 10~20 个无性系,雄株比例应大于 20%,单株混栽效果最好。

- 3.2 本研究选育出的 4 个优良无性系在生长量和抗性等方面均强于目前的主栽无性系 I -69 杨,造纸材性与 I -69 杨相当。根据 I -69 杨相当。根据 I -69 杨仅处在中等水平。因此,当务之急是要加快优良无性系推广速度,尽快实现主栽无性系的更新换代工作。
- 3.3 据统计,我国有 4/5 的杨树遭到蛀干害虫的危害^[4]。多系混合造林具有较强的抗天牛能力,辅以虫害综合防治技术,可以将天牛造成的经济损失降低到极小的程度。
- 3.4 多系混合造林可以延长林木的速生期,提高各生长阶段的生长量,但并不能改变树木的生长过程。沿江地区滩地肥力较低,杨树速生期在6 a 以前结束。因此,要进一步提高生产力11 必须加强集约经营的基本表现的各种的生长基础。House. All rights reserved. http://www

3.5 造林方法可以根据地下水位、苗木质量、运输能力、种条需求量、地表植被、水淹状况和管理水平等因素灵活运用,传统的植苗造林仍是目前主要造林方法。除一些特殊情况外,造林苗木可采用1年生 [级苗。

参考文献:

- 1 赵天锡、美洲黑杨及其杂种在世界和我国杨树栽培中的地位和作用[J]。世界林业研究,1992,5(1):74~81
- 2 南京林业大学杨树课题组、黑杨派南方型无性系速生丰产技术论文集[C]、北京、学术期刊出版社、1989、
- 3 傅军.欧美杨浩林无性系选择研究[J].林业科技通讯,1998,(8),18~20.
- 4 赵天锡,陈章水、中国杨树集约栽培[M]、北京、中国科学技术出版社,1994.

Multi-done admixture planting of Carolina poplar in protective belt along the Changiang River

FU Jun, QIAN Teng, HUANG Rong-Lai

(Foretry Department of Anhui Province, Hefei 230001, China)

Abstract: For increasing sampling and decreasing poplar borer harming of protective belt along the Changjiang River. Multi-clone admixture planting of poplar was studied in Anhui Province. The results showed that compared with one-clone planting, sampling and profit rate of multi-clone admixture planting of poplar were increased over 15%, and trees harmed by stem borers were controlled less 3%. Four fine colones which sampling were over $18.4\%{\sim}47.5\%$ compared with I-69 were selected (cv. Zhonglin-490, cv. Zhonglin-487, cv. Zhonglin-715, and cv. Zhonglin-789). Growth steges and grades of tested poplars were divided.

Key words: river bank protection forests; Carolina poplar colones; multi-clone admixture planting; productivity; stem borers; integrated control