Dormancy and germination of *Osmanthus fragrans* seeds

YANG Xiu-lian¹, HAO QI-mei²

(¹. College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; ². Construction Bureau of Xinyi City, Xinyi 221400, Jiangsu, China)

Abstract: To detect reasons for dormancy and methods of breaking dormancy, a bioassay of a methanol extract from *Osmanthus fragrans* ‘Zigeng Ziyin’ seed coats and endosperm as well as germination of seeds treated with Gibberellic acid (GA³) were studied. The cabbage seeds were germinated with methanol extract solution (0.10, 0.06, and 0.03 g·L⁻¹), by three replications each treatment. And the osmanthus seeds were soaked in different concentrations (500, 1 000, and 1 500 mg·L⁻¹) GA³ for 48 hours, then stratified with low temperature, and every 15 days, taken out 30 seeds each treatment with four replications for germination. Results showed that the restraining substances were contained in the seed coat and endosperm, and the inhibitory effects became stronger as the extraction solution concentration increased. Integrating results from the prophase, we think that seed dormancy belongs to physiological dormancy. Soaking with 1 000 mg·L⁻¹ GA³ followed by cold stratification with sand for 75 d could raise the germination percentage and could be an effective method to overcome dormancy. [Ch. 4 fig. 15 ref.]

Key words: botany; *Osmanthus fragrans*; seed dormancy; germination; GA³; low temperature treatment

种子休眠是指具有生活力的种子处于适宜的环境条件下仍不能正常萌发的一种生理现象。种子休眠是植物在长期演化过程中为了种的生存而不断适应环境的结果¹-²。对植物本身来说，种子的休眠对植物个体的生存、物种的延续和进化具有积极的作用，但对林木的生产带来较大的影响。通过观察，桂花 *Osmanthus fragrans* 种子具有一定的休眠现象。当年 4-5 月成熟的种子需层积至翌年 2-3 月才能萌发。张义等³利用赤霉素浸种和低温层积相结合的方法进行桂花种子的催芽试验，证明桂花种子具有休眠特性，低温层积和赤霉素 (GA³) 浸种可有效促进种子的萌发。袁志俊等⁴利用离体培养技术对层积 3 个月的桂花种子进行胚培养，打破了种子的休眠。对于桂花种子的休眠原因，目前尚未

*Journal of Zhejiang Forestry College* 2010, 27(2): 272-276
见报道。本研究通过对桂花种子的休眠和萌发的研究，旨在探讨桂花种子的休眠机制，以期寻找解除休眠的最佳方法，缩短休眠时间，提高播种繁殖率，同时也为品种间杂交和培育新品种积累经验，提供理论指导。

1 材料与方法

1.1 试验材料

紫梗籽银桂 Osmanthus fragrans ‘Zigeng Ziyin’ 种子：2007 年 5 月初采于南京林业大学教五楼前，去除外种皮后保存于 (3 ± 1) °C 冰箱中。紫梗籽银桂为银桂品种群中的一个品种，结实量较大，种子采收容易，故作为桂花种子休眠的研究对象。

白菜 Brassica campestris 种子：南京市蔬菜种子公司的绿优 1 号白菜种子，纯度 95%，净度 98%，发芽率 85% 以上。

1.2 试验方法

1.2.1 种皮、种实浸提液的提取 取内种皮（以下称种皮）和种实（包含胚和胚乳两部分，下文同）各 10 g，分别置于 250 mL 容量瓶中，加入 200 mL 体积分数为 80.0% 甲醇，混匀后放入冰箱内，在 2～4 °C 的恒温条件下密闭浸提，期间多次取出摇匀使其充分浸提，48 h 后过滤。所得滤液在 35 °C 下减压浓缩后定容到 0.10 L×g×mL⁻¹ (以 1 L 浓缩液中含有原材料的量计算)。

1.2.2 白菜种子生物测定方法 在培养皿中放置滤纸，分别加入一定量的甲醇浸提原液 (0.10 g×mL⁻¹)，60% 原液 (0.06 g×mL⁻¹)，30% 原液 (0.03 g×mL⁻¹)，设置 3 个重复处理 3 粒，100 粒重复 3 次白菜种子，于 30 °C 恒温全光照条件下培养，48 h 测定发芽率，72 h 测量苗高和根长，用含体积分数为 0.2% 甲醇的水溶液处理的白菜种子作对照。

1.2.3 呼吸方法 采用蒸馏水（记为 G0）和质量浓度为 500 mg×L⁻¹（记为 G5），1000 mg×L⁻¹（记为 G10），1500 mg×L⁻¹（记为 G15）的赤霉素溶液浸种 48 h，后分别与湿沙按 1:3 混合放入塑料盆中，上面覆盖保鲜膜用剪刀剪几个小洞，利于种子呼吸，将塑料盆置于 2～4 °C 冰箱中进行低温层积处理。层积期间隔半个月取各处理种子 4 个重复，30 粒重复 3 次。在 25 °C 恒温、24 h 光照条件下做种子发芽试验，并统计种子的发芽率。

2 结果分析

2.1 甲醇浸提液对白菜籽发芽率的影响

2.1.1 种皮、种实甲醇浸提液对白菜籽发芽率的影响 不同处理的种皮、种实甲醇浸提液对白菜籽发芽率的影响结果如图 1 所示。不同处理种实的甲醇浸提液处理的白菜籽发芽率分别较对照降低了 2.81%，20.83% 和 29.16%；不同处理种皮浸提液处理的白菜籽发芽率分别较对照降低了 1.35%，6.98%和 11.15%。总的来说，随着浸提液质量浓度的增加，所处理的白菜籽发芽率呈逐渐降低的趋势，高浓度甲醇浸提液对白菜籽的抑制作用显著。

2.1.2 种皮、种实甲醇浸提液对白菜苗苗高生长的影响 不同处理的种皮、种实甲醇浸提液对白菜苗的苗高生长量的影响结果见图 2。与对照相比，种实各处理浸提液对白菜苗苗高生长分别降低了 18.0%，40.0%和 58.0%；而不同处理种皮浸提液处理的白菜苗苗高却比对照分别增加 7.4%，7.4%和 1.6%。以上结果表明：胚乳浸提液处理的白菜籽苗高随着浸提液质量浓度的增加，苗高呈现出逐渐降低的趋势，说明胚乳浸提液对白菜苗有抑制作用；而种皮浸提液对苗苗高生长的抑制作用不显著。

2.1.3 种皮、种实甲醇浸提液对白菜苗的根长生长量的影响 不同处理的种皮、种实甲醇浸提液对白菜苗的根长生长量的影响结果见图 3。与对照相比，种实各处理浸提液处理的白菜根长分别降低了 76.4%，88.76%和 91.6%；而不同处理种皮浸提液处理的白菜根长在 0.03 g×mL⁻¹ 和 0.06 g×mL⁻¹ 时比对照增加了 34.79% 和 18.53%，质量浓度为 0.10 g×mL⁻¹ 时，根长比对照降低 48.77%。以上结果表明：种实浸提液处理的白菜苗根长随着浸提液质量浓度的增加，根长呈现出急剧降低的趋势，说明种实浸提液对白菜苗根长有很强的抑制作用；而低质量浓度的种皮浸提液处理的白菜苗根长较对照有一定的
促进作用（其原因有待进一步研究），随着质量浓度的增大，逐渐转为抑制作用。

综上所述，紫梗籽银根种子的种皮和种实的甲醇浸提液中含有某些抑制物质，这些物质对白菜籽的发芽率、苗高和根长生长量均有一定的抑制作用，并随着浸提液质量浓度的提高，抑制作用逐渐加强。相比而言，种实的甲醇浸提液对白菜籽发芽率的抑制作用比种子皮浸提液的抑制作用更大。

2.2 不同质量浓度赤霉素处理的紫梗籽银根种子发芽率的变化

未经低温层积处理的紫梗籽银根种子置床 30 d 仍未见种子萌发，后将部分种子的种皮和胚乳剥除成离体胚，再置床 58 d，仅见胚体子叶部分转为绿色，而胚轴仍为白色；而未剥除的种子仍无萌发迹象。这充分证明前面的研究结果：紫梗籽银根种子中含有发芽抑制物质，种子存在生理休眠现象。

经不同质量浓度赤霉素处理并经低温层积的紫梗籽银根种子发芽率见图 4。从图中可以看出，不同处理的紫梗籽银根种子在层积 60 d 后开始发芽，且以 1 000 mg·L⁻¹ 赤霉素处理的发芽率最高，随着层积时间的延续，各处理发芽率逐渐增加，至层积 105 d 时发芽率最高，其中 G10 在 75 d 时发芽率为 71.11%，93 d 时为 67.78%，105 d 时为 72.37%，基本上保持稳定。G5 和 G15 发芽率的提高滞后于 G10。105 d 时分别为 63.82% 和 70.32%。而未经赤霉素处理的种子在层积 105 d 后其发芽率仅为 26.67%。方差分析结果表明：不同质量浓度赤霉素、不同层积时间以及处理×时间的种子的发芽率差异均达到极显著水平。由此可见，用赤霉素处理种子后再进行低温层积可显著解除休眠，其中以 1 000 mg·L⁻¹ 为最佳，只要 75 d 左右就可打破桂花种子的休眠。

3 结论与讨论

对紫梗籽银根种子的种皮、种实的甲醇浸提液进行生物测定。结果表明：种皮、种实的甲醇浸提液对白菜籽的发芽率、白菜幼苗高生长和根生长量均有一定的抑制作用。这种抑制作用随着质量浓度
的增加而增大，并且胚乳浸提液的抑制作用比种皮的大。在实验中还观察到白菜苗根系出现膨大、扭曲、向上生长等畸形现象。由此可见，紫梗籽银桂种子中存在一些抑制白菜籽萌发和影响生长的物质。相同的实验在南方红花红木 Taxus chinensis var. mairiei[5]，青钱柳 Cyclocarya paliurus[6]，洋白蜡 Fraxinus pennsylvanica[7]等树种上均已得到证实。但紫梗籽银桂种子中究竟含有何种物质，多大质量浓度才

会种子休眠起作用仍需进一步研究。


种子休眠的原因各不相同，因而解除休眠的方法也各不相同。层积处理是一种在生产上应用很广泛的方法，尤其是对解除由于生理后熟引起的种子休眠很有效。张义等[15]研究发现，紫梗籽银桂种子胚具有生理后熟现象，低温层积能够增进种子萌发，在采收后一般需经沙藏后播种。本研究用赤霉素处理层积后低温层积，60 d 时就有部分种子萌发，并且 75 d 后发芽率基本达到最大值，之后种子的发芽率保持稳定，表明层积处理对解除桂花种子休眠很有效，层积 75 d 左右即可解除休眠。

参考文献：


