Relationship between *Valsa sordida* and abnormal coldness in spring

YU Hai-ying¹, CHAI Shou-quan¹, ZHOU Yu-jiang², ZHAO Jun¹

(1. General Station of Forest Pest Management, State Forestry Administration, Shenyang 110034, Liaoning, China; 2. Test Forest Centre of Liaoning Province, Qingyuan 113311, Liaoning, China)

Abstract: Abnormal coldness in spring from 1997 to 2010 in Liaoning was classified into four levels of low-grade, secondary-grade, third-grade and serious in this paper. The relationship between the incidence of *Valsa sordida* and the different level of abnormal coldness in spring was also analyzed. The results showed that there was positive correlation between the total area of disease and abnormal coldness in spring ($P<0.05$), the same positive correlation with the moderate and serious disease area ($P<0.01$), and no significant level was achieved with the mild disease area ($P>0.05$). There was negative correlation between abnormal coldness in spring and the mild disease incidence rate ($P<0.01$) and positive correlation with the moderate and severe disease incidence rate ($P<0.01$). The year of severe abnormal coldness in spring matched with large acreage disease incidence of *Valsa sordida* and the more severe the coldness, the more obviously the acreage and incidence of moderate and serious disease increased. [Ch, 4 tab. 10 ref.]

Key words: forest protection; abnormal coldness in spring; *Valsa sordida*; epidemic area; disease incidence; Liaoning Province

倒春寒是春季回暖过程中由冷空气活动造成的气温持续低于同一时期气温平均值，并对农业生产等造成影响的天气气候现象[1]。杨树烂皮病 *Valsa sordida* 是杨树 *Populus* spp.的常见病和多发病，多发生在杨树、大校、枝干分杈处或因冻裂、吹枝而引起的伤口处，病菌侵入后一段时间通常呈潜伏状态，当树势衰弱，抗性降低时迅速发病，轻者影响树木生长，重者造成树木死亡。1999年，辽宁省大部分地区发生了倒春寒灾害性天气，此后，杨树烂皮病在辽宁省不同地区不同程度发生，且部分地区爆发成灾，大片杨树死亡，对当地林业生产和生态环境造成严重影响。目前，林业有害生物防治中，通常认为倒春寒是杨树烂皮病发生的诱因之一[2-3]，但未见其相关性分析研究报道。为弄清倒春寒与杨树烂皮病发生是否相
关于，作者对 1997–2010 年辽宁省杨树烂皮病发生数据与对应的气象数据进行了统计分析，现将有关结果报道如下。

1 材料与方法

1.1 倒春寒数据的收集与处理

辽宁省沈阳、鞍山、本溪、大连、丹东、阜新、锦州、营口、长海、黑山、桓仁、建平县、开原、宽甸、清原、绥中、瓦房店、新民、兴城、熊岳、岫岩、彰武、庄河等 24 个气象站 4 月上旬至 5 月中旬的气温等气象数据来自国家气象中心（项目合作单位）。因地理位置、出现时间和冬时季节的差异，连续 5 d 日平均气温达到 10.0℃ 以上才算进入春季[10]，所以辽宁省一般为每年 4 月 20 日才进入春季，3 月到 5 月月平均气温大于 12.0℃ 的特殊年份除外，故辽宁省倒春寒发生时段应划为 4 月上旬至 5 月中旬。由于目前辽宁省尚没有统一的倒春寒规定和等级标准，因此，参照倒春寒等级划分[11]，制定辽宁省倒春寒等级指标（表 1），对辽宁省 1997–2010 年 4 月上旬至 5 月中旬气温资料整理，得出倒春寒发生范围，并划分倒春寒等级。

表 1 辽宁省倒春寒等级指标

<table>
<thead>
<tr>
<th>倒春寒等级</th>
<th>最大降温幅度 ΔT/℃</th>
<th>气温距平 ΔT/℃</th>
<th>持续时间 L/日</th>
</tr>
</thead>
<tbody>
<tr>
<td>轻微</td>
<td>3.0<ΔT≤5.0或5.0<ΔT≤8.0</td>
<td>-2.0<ΔT≤-1.0</td>
<td>≥3</td>
</tr>
<tr>
<td>中度偏轻</td>
<td>5.0<ΔT≤8.0或8.0<ΔT≤10.0</td>
<td>-3.0<ΔT≤-2.0</td>
<td>≥3</td>
</tr>
<tr>
<td>中度</td>
<td>8.0<ΔT≤10.0或10.0<ΔT≤12.0</td>
<td>-5.0<ΔT≤-3.0</td>
<td>≥5</td>
</tr>
<tr>
<td>严重</td>
<td>10.0<ΔT或12.0<ΔT</td>
<td>8.0<ΔT</td>
<td>≥5</td>
</tr>
</tbody>
</table>

说明：ΔT 表示最大降温幅度，指倒春寒从发生到结束这段时间内日平均气温或最低气温 24 h 最大下降幅度（ΔTm）或 48 h 最大下降幅度（ΔTm）。ΔT 表示气温距平，指倒春寒从发生到结束这段时间内日平均气温的距平值（℃）。L 表示持续时间，指倒春寒从出现到终止持续的时间（d）。

1.2 杨树烂皮病疫情数据

杨树烂皮病疫情数据（表 2）来自“国家林业局森林病虫害信息中心处理系统”及辽宁省森林病虫害防治检疫站（林业有害生物防治检疫局）报表，发病程度分级，按参考文献[5]分为轻、中、重等 3 级。

表 2 1997–2010 年辽宁省杨树烂皮病发病情况

<table>
<thead>
<tr>
<th>年份</th>
<th>总发病面积 /hm²</th>
<th>不同发病程度病害面积 /hm²</th>
<th>不同发病程度所占比例/%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>轻度</td>
<td>中度</td>
<td>重度</td>
</tr>
<tr>
<td>1997</td>
<td>6.45</td>
<td>5.10</td>
<td>1.05</td>
</tr>
<tr>
<td>1998</td>
<td>7.80</td>
<td>5.54</td>
<td>1.80</td>
</tr>
<tr>
<td>1999</td>
<td>8.06</td>
<td>47.38</td>
<td>23.54</td>
</tr>
<tr>
<td>2000</td>
<td>34.63</td>
<td>25.34</td>
<td>8.25</td>
</tr>
<tr>
<td>2001</td>
<td>52.32</td>
<td>31.78</td>
<td>14.09</td>
</tr>
<tr>
<td>2002</td>
<td>101.50</td>
<td>59.82</td>
<td>26.54</td>
</tr>
<tr>
<td>2003</td>
<td>394.60</td>
<td>167.32</td>
<td>153.37</td>
</tr>
<tr>
<td>2004</td>
<td>153.97</td>
<td>104.65</td>
<td>37.63</td>
</tr>
<tr>
<td>2005</td>
<td>127.29</td>
<td>80.36</td>
<td>33.88</td>
</tr>
<tr>
<td>2006</td>
<td>588.76</td>
<td>23.39</td>
<td>211.54</td>
</tr>
<tr>
<td>2007</td>
<td>576.31</td>
<td>390.11</td>
<td>135.53</td>
</tr>
<tr>
<td>2008</td>
<td>857.72</td>
<td>436.28</td>
<td>275.86</td>
</tr>
<tr>
<td>2009</td>
<td>1121.29</td>
<td>632.38</td>
<td>315.14</td>
</tr>
<tr>
<td>2010</td>
<td>1462.37</td>
<td>736.43</td>
<td>426.84</td>
</tr>
</tbody>
</table>

利用 SPSS 13.0 统计软件，对倒春寒与杨树烂皮病年发生面积关系，倒春寒与轻、中、重等杨树烂皮病发生面积、发病率的关系进行了相关分析。

2 结果与分析

2.1 辽宁省倒春寒发生范围及等级划分

根据辽宁省倒春寒等级评定标准，对 1997–2010 年 24 个气象站的 4 月上旬至 5 月中旬温度数据综合分析，将辽宁省 1997–2010 年间倒春寒发生程度（表 3）分为 4 级，即 1 级（轻微），2 级（中度偏轻），3 级（中度），4 级（严重）。其中：

2.2 倒春寒发生程度与杨树烂皮病发病率程度的相关关系分析

倒春寒发生程度与杨树烂皮病年发生面积、不同发病程度面积的相关性分析如表4所示。结果表明：倒春寒发生程度与杨树烂皮病年发生总面积呈正相关，相关系数 \(R = 0.624 \)（*P* < 0.05），倒春寒发生越严重的年份，相应的杨树烂皮病发病面积加大。倒春寒与杨树烂皮病发病程度的关系为：中、重度发病面积呈正相关，相关系数 \(R \) 分别为 0.687（*P* < 0.01），0.728（*P* < 0.01），与轻度发病面积关系未达到显著水平（*P* > 0.05）。如，1999年的倒春寒多数发生在5月左右，由于发生时间晚，倒春寒的危害略重，杨树烂皮病害发生也较重；2002年4月全省大部分地区都发生了3次倒春寒，由于倒春寒的次数较多，杨树烂皮病发病面积也有所增加；2003年冷空气发生次数为4次，在全省部分地区造成1-2次倒春寒，杨树烂皮病发展严重；2006年全省普遍发生倒春寒期间，加之2005年秋季为暖秋，一直到12月初才开始降第一场雪，接着气温突然下降，比正常年份偏低2.0-5.0℃。2006年春季，又遭遇了几十年来最为严重的倒春寒，全省杨树烂皮病发生严重；2010年4月发生5次冷空气，波及全省各地，且强度偏强，致使气温达近50年最低值。同时，全省也大面积爆发杨树烂皮病。

倒春寒发生程度与杨树烂皮病不同发病程度比率间的相关性分析表明（表4），倒春寒发生程度与轻度病害所占比率呈负相关，相关系数 \(R = -0.903 \)（*P* < 0.01），与中、重度病害所占比率呈正相关，相关系数 \(R \) 分别为 0.750（*P* < 0.01），0.962（*P* < 0.01）。由于杨树烂皮病菌具有潜伏侵染的特性，许多看似健康的苗木都携有该菌，但多数不表现症状或症状较轻，病势衰弱时才可发病。倒春寒的发生导致树体严重衰弱，倒春寒发生程度越重，中、重度病害发生的面积和比率增加越明显，而轻度病害发生比率明显降低，说明倒春寒发生后，轻度病害明显有向中、重度转化的趋势，倒春寒越严重，病势加重的趋势越严重。

2.3 倒春寒对杨树烂皮病影响的原因分析

杨树烂皮病（包括其他一些溃疡病）是杨树的常见病和多发病，几乎每年都有发生。根据杨树烂皮病的发生规律，倒春寒对杨树烂皮病发生情况影响的原因可从以下3个方面分析。①倒春寒发生后，土壤温度回升缓慢，致使杨树根系活动较晚，不能有效地补充树体在秋、冬季所失掉的水分，使树皮含水量降低，可能诱使病害发生。研究表明：杨树烂皮病等病害与树皮的含水量（树木生理学称为膨胀度）关系极为密切。一般情况下，树皮含水量与抗病性成正相关。当树皮含水量达到30%以上时，树皮通常不易发病；树皮含水量低于20%时，便容易发病；树皮含水量不足60%时，发病严重。②倒春寒发生的月
份与杨树烂皮病发病的春季高峰基本吻合，加重了发病率和发病程度。杨树烂皮病在1 a 中通常有2 次发病高峰，一次在春季，另一此在秋季，但通常与春季病害的发生程度比秋季重。③进入春季后，杨树抵抗低温的休眠机制已经解除，病原开始流动，突然发生倒春寒，杨树可能由于失去防御机制，树皮受到伤口，有利于病菌侵入，导致病害发生。加之辽宁省当前所栽植的杨树多为“107”“108”“中林”等速生品种，细胞较大，细胞壁较薄，更易发生树皮裂缝现象，烂皮病发生也较严重。

3 讨论

近年来，极端天气事件[1]对国民经济和生态环境的影响和危害受到越来越多的关注。倒春寒发生程度与杨树烂皮病发病程度的相关性研究，不仅为指导倒春寒发生程度及时开展杨树烂皮病的监测、预防和除治提供了理论依据，也为开展极端天气事件与林业有害生物的发生关系研究提供了思路。生产中，除倒春寒外，影响杨树烂皮病发病的因素较多，如春季干旱、土壤板结、林木含水量、苗木假植时间、载植时水分含量，以及树种、林龄和栽植密度、水肥管理、其他病虫害的危害等，它们与杨树烂皮病的关系十分复杂，单纯的倒春寒研究还不足以对该病进行及时准确的预测和预报，因此，还须进一步研究，筛选出相关影响因子，判别杨树烂皮病的发病情况，建立预测模型，以期达到准确预测、科学防治的目的。在倒春寒资料的收集过程中，由于缺乏辽宁省的倒春寒分级技术标准及与其相关的直接资料，加之暖冬、冬季冻害、春季低温冷害、春季低温阴雨等多种气象因素在本研究中未予考虑，所得出的倒春寒等级结论可能与实际情况有出入，在今后的工作中，还需进一步检验及订正。

参考文献；
ZHOU Lihua. Coldness is not belong to abnormal coldness in March [J]. Environ Prot Circul Econ, 2010, 30 (3) : 70.