Different stump heights with *Toona sinensis* bud vegetable yield and commodity characteristics with field coppice management

HAO Mingzhuo¹, LI Qun², PENG Fangren¹, SHEN Lulu¹, LIANG Youwang¹, HAN Minghui¹, WANG Kunrong²

(1. College of Forest Resources and Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; 2. Forestry Technology Transfer Centre of Taixing City, Taixing 225400, Jiangsu, China)

Abstract: As a Chinese traditional food, *Toona sinensis* bud vegetable has rich nutrition and much benefit for human body health. Stump is an important method to improve *Toona sinensis* bud vegetable yield and actualize dwarf and close planting. Up to now, the problem of which is the best stump height for high vegetable yield and good commodity character is not resolved. This paper combined with *Toona sinensis* low production forest improvement project in Taixing City of Jiangsu Provence in China, objective to provide scientific evidence and reference for *Toona sinensis* high yield cultivation. Using two-year-old *Toona sinensis* seedlings, the effects of different stump heights (0, 20, 40, 60, and 80 cm) on bud vegetable yield and commodity characteristics with field coppice management were studied. Experimental design was one singel factor random repeated test (three times repeated, one repeat used fifty per plant). Results with stumped seedlings showed (1) significant differences (*P* < 0.05) for both terminal bud and lateral bud vegetable yield when compared to content of soluble sugars, soluble proteins, vitamin C, and amino acids. Also, sensory quality of the lateral bud had significant differences (*P* = 0.004), but the terminal bud did not (*P* = 0.211). (2) For high bud vegetable yield and sensory quality, the 60 cm stump height treatment was best with a 22.3% greater yield than the 0 cm stump height. (3) Considering terminal bud vegetable nutritional components, the 0 and 20 cm stump height treat-
ments had mostly higher soluble sugar content and vitamin C content; whereas the 60 and 80 cm stump height treatments had higher soluble protein content and amino acid content. [Ch., 3 fig. 18 ref.]

Key words: horticulture; *Toona sinensis*; stump height; bud vegetable yield; sensory quality; nutritional components

香橪 *Toona sinensis* 为栋科 Meliaceae 香橪属 *Toona* 落叶乔木，是中国优良的菜用兼材用树种，其茎干于芽菜和种子生产的芽苗菜营养价值高，富含抗氧化活性成分。目前，国内规模化栽培香橪大多还是露天栽培的模式，生产中如果不重视整枝剪枝，定植2-3年后树高超过3 m，且枝干细长，产量低，芽菜采摘起来相对困难，管理用工量增加，例如，2009年江苏泰兴市元竹镇就有此类低产林60 hm²。目前香橪矮化主要通过2种途径：一是利用矮壮素和多效唑，通过植物生长调节物质促使植物矮化，但是从食品安全的角度考虑，不适合提倡推广；二是通过整枝修剪技术，例如浙江余姚、浙江慈溪和山东东营等地，主要通过摘心和裁干来实现矮化。是国内最常用的栽培模式。近年来，国内虽然开展了一些关于香橪矮化密植栽培方面的研究，但针对低产林改造的裁干试验未见报道。不同裁干高度对香橪芽菜产量和营养成分高低的影响效果也尚未明了。本研究开展了香橪裁干高度试验，旨在为国内的香橪矮化密植生产提供理论指导和依据。

1 材料与方法

1.1 试验地概况

试验地点位于江苏省泰兴市元竹镇。土壤类型为潮土类的高沙土，土壤厚度＞40 cm，＜0.01 mm黏粒比例为（25±5）%，容重为（1.35±0.09）g·cm⁻³，孔隙度为（49.31±3.49）%，pH 8.4±0.4，有机质质量分数（9.4±0.24）g·kg⁻¹，全氮（0.65±0.15）g·kg⁻¹，碱解氮（76±32）mg·kg⁻¹，全磷（1.49±0.22）g·kg⁻¹，有效磷（5±3）mg·kg⁻¹，有效钾（57±21）mg·kg⁻¹，有效硼（0.258±0.046）mg·kg⁻¹，有效锌（0.33±0.08）mg·kg⁻¹。9]

1.2 材料及裁干方法

以田间栽培的香橪2年生实生苗为材料，种源来自四川成都，品种为红油橪，栽植密度为60 cm×60 cm，平均苗高（1.23±0.37）m，地径（0.05±0.26）cm。2010年5月下旬，待芽菜采摘结束后，分别从0，20，40，60，80 cm 处对苗木进行裁干处理，裁干150株·处理⁻¹，设3个重复，50株为1个重复，采用随机重复试验设计。

1.3 试验方法

1.3.1 芽菜感官品质和产量测定方法 2011年4月下旬，随机选取30株·处理⁻¹，分顶芽和侧芽采摘芽菜，采后立即在电子天平上称量，统计平均单株鲜质量；然后采用模糊评价综合打分法测定其感官品质（同陈德根等⑨的试验方法）。

1.3.2 芽菜营养成分分析方法 可溶性糖测定采用蒽酮法，可溶性蛋白质测定方法采用考马斯亮蓝 G-250染色法，维生素 C 的测定方法为 2,6-二氯酚靛酚法（GB 6195-1986）。游离氨基酸测定方法采用茚三酮比色法。各个裁干高度处理测定3个重复。

2 结果与分析

2.1 不同裁干高度对香橪芽菜产量的影响

试验结果表明：不同裁干高度处理下顶芽和侧芽产量存在显著差异（F=3.84，P＜0.04；F=3.68，P＜0.04）。图1可以看出：60 cm 裁干顶芽产量最高，接下来产量由高到低依次是 20，40，80和0 cm；侧芽产量由高到低依次是 80，60，20，40，和0 cm，除20 cm裁干顶高于40 cm裁干外，总体上侧芽产量随裁干高度增加呈上升趋势。此外，顶芽的产量明显高于侧芽，平均是侧芽的 2.23 倍。

2.2 不同裁干高度对香橪芽菜感官品质的影响

试验结果表明：裁干高度对顶芽的感官品质影响不显著（F=1.77，P=0.21），对侧芽的感官品质有极显著影响（F=7.79，P＜0.01）。图2可以看出：60 cm 裁干顶芽的感官品质最高，接下来，从高到低依次是 80，
40, 0 和 20 cm；侧芽的感官品质则随着截干高度增加呈上升趋势；总体上，顶芽的感官品质都好于侧芽。

图 1 不同截干高度对香椿芽菜产量的影响

不同字母表示在 P<0.05 水平上差异显著

Figure 1 Stumping height effect on bud vegetable yield of *Toona sinensis*

图 2 不同截干高度对香椿芽菜感官品质的影响

不同字母表示在 P<0.05 水平上差异显著

Figure 2 Stumping height effect on bud vegetable organoleptic quality of *Toona sinensis*

2.3 不同截干高度对香椿芽菜营养成分的影响

香椿芽菜含有丰富的可溶性糖、蛋白质、维生素 C 和氨基酸，这些营养成分质量分数的高低会影响芽菜的营养价值和商品价值，也是重要的商品性状指标。实验结果表明：不同截干高度处理下香椿顶芽的可溶性糖、可溶性蛋白质和游离氨基酸等的质量分数均存在显著差异 (F1,10 = 19.44, F1,10 = 28.19, F1,10 = 10.30, P<0.01)，维生素 C 存在显著差异 (F1,10 = 4.22, P<0.05)；侧芽的可溶性糖、维生素 C 和游离氨基酸质量分数均存在显著差异 (F1,10 = 6.11, F1,10 = 13.76, F1,10 = 6.24, P<0.01)，可溶性蛋白质质量分数存在显著差异 (F1,10 = 5.13, P<0.02)。

图 3a 可以看出：顶芽的可溶性糖质量分数由高到低依次是 20、0、60、80 和 40 cm 截干，侧芽由高到低依次是 0、60、40、20 和 60 cm 截干。图 3b 可以看出：顶芽的可溶性蛋白质质量分数由高到低依次是 60、40、0 和 20 cm 截干，侧芽由高到低依次是 40、60、0 和 20 cm。图 3c 可以看出：顶芽的维生素 C 质量分数由高到低依次是 20、0、60、80 和 40 cm 截干，侧芽由高到低依次是 0、60、60、0 和 20 cm。图 3d 可以看出：顶芽的游离氨基酸质量分数由高到低依次是 80、60、40、0 和 20 cm 截干，侧芽由高到低依次是 80、40、60 和 0 cm 截干。总体上，顶芽的可溶性糖、可溶性蛋白质、维生素 C 和游离氨基酸质量分数均高于侧芽。

3 结论与讨论

田间矮化密植栽培是香椿主要栽培模式之一。截干整形修剪技术不仅关系到管理用工效率，并且对芽菜的产量和商品性状（包括芽菜的感官品质和营养成分等指标）也有一定影响。

黄宗兴等在浙江慈溪市以 2 年生香椿实生苗为材料，调查了截干后植株抽枝条数和植株生长高度。结果表明：20、30、60 cm 截干，抽枝数分别为 3.1、3.3、3.9 个，植株生长高度分别为 64.7、69.7、80.9 cm。随着截干高度增加，抽枝数量与植株生长高度也会增加。黄鹏以 1 年生香椿实生苗为材料，研究了日光型温室密植栽培条件下不同平茬（即截干）高度对苗木生长和芽菜产量的影响效果，结果表明：于 7 月中旬 40 cm 留干高度平茬处理的香椿芽平均产量较 20 cm 和 60 cm 处理分别增加 11.24%和 17.78%。本研究认为：香椿截干整形技术有一定的地域性差异，通常江浙地区截干多在香椿芽菜采收之后（时间在 5 月下旬至 6 月上旬），明显早于甘肃武威地区，早截有利于充分利用土壤养分和肥力，并对树体后期的营养积累较为有利。本研究截干时间为 5 月下旬，比黄鹏试验中的平茬时间早 2~3 个月，并且栽培模式与试验材料也存在差异。依据本研究的试验结果，针对 2 年生红油椿实生苗，从提高芽菜产量和感官品质考虑，60 cm 截干效果最好，顶芽的感官品质最佳，芽菜产量比最差的 0 cm 截干高 22.3%。参考近年来同时期香椿的市场销售价格，芽菜按 40.00 元·kg⁻¹ 计算，本试验截
不同裁干高度对香椿芽菜营养成分的影响

Figure 3 Stumping height effect on soluble sugar, soluble protein, vitamin C and amino acid of bud vegetable of Toona sinensis.

不同裁干高度对香椿芽菜营养成分的影响

图 3 不同裁干高度对香椿芽菜营养成分的影响

栽培模式下 60 cm 裁干后第 2 年第 1 次采摘的收入为 2.60 元·m²。

裁干经营措施常可见本本植物叶用栽培种，如赵贵等 [12] 研究认为：裁干能增加银杏 Ginkgo biloba 叶的产量和总黄酮含量。针对香椿芽菜的营养成分，国内先后开展了品种、种源、采摘时间、季节动态变化规律等方面的研究 [13-17]，而裁干对芽菜营养成分的影响效果未见报道。本研究发现，裁干高度对香椿顶芽和侧芽的营养成分均有较大影响，进而影响到芽菜的商品价值。本研究认为：结合生产实践要求，香椿芽菜的营养品质应重点考虑顶芽，侧芽可作为参考。依据结果实验，0 cm 和 20 cm 裁干，芽菜的可溶性糖及维生素 C 质量分数相对较高；60 cm 和 80 cm 裁干，芽菜的可溶性蛋白质和游离氨基酸质量分数相对较高；40 cm 裁干除可溶性蛋白质质量分数相比较外，其他指标均低于其他裁干处理。

目前，国内香椿栽地栽培裁干高度通常为 15~25 cm [18]。黄宗光等 [19] 和朱桂河 [20] 认为：裁干高度对枝条萌发数和枝条生长高度无明显影响（文中未见显著性检验），因此，为矮化树形，可采用矮干裁干，以 15~20 cm 为宜。本研究结果表明：裁干高度对香椿顶芽和侧芽的产量、感官品质、营养成分质量分数等均有显著影响，侧芽的产量和感官品质随裁干高度增加呈上升趋势，其原因可能是树木营养分消耗与分配和树形变化导致枝干周围环境 [21] 发生变化。整枝修剪具有双重作用，表现为局部促进，整体抑制。现代的经济树木整枝修剪技术提倡轻修剪或不修剪，以避免消耗大量的树木营养从而导致树木生长势衰弱。本研究认为：兼顾芽菜的产量和商品性状，实际生产中裁干高度不宜过低，以 60 cm 为宜。此外，推荐采用摘心、拉枝等技术来控制植株高度，具体方法还有待进一步研究。

参考文献:

