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(BT A AR AREE & B K R SC 0, Wil HidH 311300)
WE: [ 86 ] AR & o LM Carya illinoensis LBD & B Rk s MdFie . B X o flm L a2 Py R AKX,
(F& ) ERAWEESFRER G A LEMIBD AR, S ZAREHHE, 2RAEFEZ . TRMY TR
S Ao ERER FAAAR Y IARBERBGRABX, [SBR] o hbBs kB — 523 52 Meik LBD AR, R%E
ARG, ZAKEFRRMAM A Motif 24T 5% 3 %: Group I . Group Il #= Groupll . % A7 st 547+, 52 A~
LBD AF LOB £ MB TP AT B 3NEZNLEHM . CXL,CXCX,CHIREM . B AT WU H A GAS &M 5 R M 454t
(zipper-like) 24, FHA3 XN AN X AT HFHOG T FREHK, RBREEZIEHY LBD AR Zki) 2504
A F 5, REFAEEA Group | = Group I A4 A 4& 5, ™ Groupll My #TA LBD AR EF | L& KeyH X, €M
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KA A AER. FR LM LBD AR P XA EEAEL TR PRGEALG—FEAR, ZLARTRAREL AL
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Genome-wide identification and bioinformatics analysis of LBD family of
transcription factors in Carya illinoensis

HUANG Yuancheng, GUO Wenlei, WANG Zhengjia
(State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China)

Abstract: [Objective] This study is aimed to investigate the structural features and the evolutionary patterns of
the LBD transcription factor family as well as their expression patterns throughout the embryonic development
in Carya illinoensis. [Method] With bioinformatic software employed, efforts were made to identify the LBD
gene and analyze its gene structure characteristics, phylogeny relationships and evolutionary history in flower
plants, as well as their expression patterns at the three key stages througout the embryonic development.
[Result] Within the whole genome in C. illinoensis there were a total of 52 candidate LBD genes which, in
terms of gene structure, maximum likelihood phylogenetic tree and motif analysis, could be classified into 3
categories: Group 1, Group II and Group Ill. After the multiple sequences alignment analysis three important
structures in the LOB domains of 52 LBD genes were identified, namely the CX,CXCX3C zinc finger

structure, the highly conserved glycine GAS structure and the leucine zipper-like structure with the occurrence
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of specific mutations or deletions in each of them. According to the LBD gene family phylogenetic analysis of
representative flowering plants, Group [ and Group II are relatively conservative, while all LBD genes in
Group III share a longer branch which indicates that they have undergone greater variation and new functions
have been differentiated. The expression analysis showed that the LBD gene family participates in the function
of regulating the development of embryos, usually with control over the development and morphogenesis of
cotyledons and there is a cluster of genes in the LBD gene of hickory pecans that are highly expressed during
the entire embryo development process playing a highly significant role. [Conclusion] A total of 52 LBD
genes were obtained in the whole genome of C. illinoensis, which can be divided into three different subfamilies
with different gene structures, protein structures, evolutionary patterns, and expression patterns, and these
subfamilies, according to the transcriptome expression analysis, are differentially expressed at different stages
of embryonic development, and involved in the regulation of C. illinoensis embryo development collectively.
[Ch, 5 fig. 2 tab. 47 ref.]

Key words: Carya illinoensis; LBD; transcription factor; phylogenetics; gene function

LBD f# 53 F )& — 28 7E H AR 0t N o HAT A= 28 B i1 5 (LOB) 8 [ B 25 A S A 5 A 2 s R -1
SHUAI S5 ik A3 T LBD JE(H, KM EEMYMNARE A AAR P RAIFASE5NAERENEE
JE RS MRPEMIAE 28 B A (LOB) 345, AR IT Arabidopsis thaliana W 1) LBD ¥4 55 K - 2 it i # 7]
o 2250 28 1(Group 1) A 1458 8 19 i FE DR SF 1Y CXoCX(CX3C BEFR 540, 30 KRB 245 & Fi e
DNA J¥ 41 . [Al B} 25 1 /9 LBD & L2 A &5 BE AR ST 19 H 2 R GAS 25 1 Fll 5t 2 R 18 (zipper-like) 45 14
(LXLXZLXGL), ‘EATZ LT B th 92 He 45 44 i 2 1 BT A EAE o 26 2(Group 2) A 1 AMRSF
1) CX,CXCX3C FEFR AN, R ZE0) LBD #5% 12K 8 T35 1. 25 2 19 LBD & H AR IR A7
A 1AATREABAT DI RE MR B e E R b sk 450, BB 1 D RLE-L B 45, fik, CHEN %P
L W58 /N FE Triticum aestivum LBD 45 [ J5T Y LOB 45 #4) 8 (19 25 (1 BT 45 & 2%, #8078 T Z 10 £ 31 /Y
CX,CXCX3C BHR A S PR C BUBHIRESH . Cy BHEES I H W 5 GAS G5 LA S ay F o5 22 (8] A T ELHY
SALFEWER, MR #1R5] DNA, JFREXTEE A7 s 128 IR BUEA T8 A7 o e ) — 28 LBD JE R D) REAF
52 W LBD HEP B e AE S8 B KT A h SO A gl rh 258, FEAv B s e AE SR B R & A WRTE
haet. [FmS, LBD JEPEREBES SHYIES R . ZOrRMMASH PR 2. 28 159 LBD 4
HRKZH S5 AT SRS R A KRGS S F ML it . Mk, 252 FEREE
AR R AT R G BLE YIRS 525 TR RS, ZERIRI ST LBD 4% 5% K+ 1) 3RA s ht
o, RIRIARJLTES T2 2 (A LBD JEH 3L, X 3R LBD Jt [H 684 70 A8 P93 It 5 1 B2 g h &
FAEAY, LBD NS H5RMmITF 24Uk BT, it 2 M RESmAeSRE LT 4
M RGN MR ERERD A0, BIRIT A AthLBD16 J 22 S MR A e i &
B, AthLBD29 W GE ST 6l 400 B IT 2R 47 4R BEXG L0 A K 245 5 i b B2, TER MR T) R Fusarium
oxysporum " AtLBD20 VE R 5 B IE LT BEUS TR 1T R AR JA) 15 5% T FIPE R T A JA (55 5%
R R RO BRI ST Z A LBD SR DIRe RV 2 WA R RIFERE AR L, 4 OsIG1 A2
L F & A o BRI 5 W KR Oryza sativa W AE S8 B B MALBD13 8 FH 50 AT 2L i 32 SR Malus x
domestica AL AT & AT R WL 5L RIES, A6 VF 29 Fp o JF 8 T R 3 B A 55080 5 IR X
LBD H: N FJE X E MM BT, WZH Camellia sinensis® . 548 2 Solanum tuberosum™ . ¥
Eucalyptus robusta™ . 2% %% Brassica campestris™ | #ij%] Vitis vinifera™' ., K. Glycine max”%, {HJ& H Al
WSS LMk Carya illinoensis W 1Y) LBD & AT 50EEA 18 o 752 LAk 42 2 DY A 300 P 2 28 56 il s
LBD R KGR A # AT RGBT AR GEE A Y B T B T e Il sk e L R 20 N
() LBD JE [, ZptfrHIERIZ54 . BT (motif) 7347 . s RIBHIAT R G EAR, Fil LBD LA
FIETE IRk h AT Rer Tfe, Jf bk — bR SR bR Jal
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1 #MEE 7%

1.1 sYMeERAZEARRETIIKER

WA IAZRE . LRk Carya cathayensis. itk Juglans reiga B9 455 R 4 25 1 5 51 5K I8 T 50 Bk B
Juglandaceae £ % /% (http://www.juglandaceae.net/)*®, 427 Ginkgo biloba. JGiMFE Amborella trichopoda .
Wi B BEE Nymphaea coloratar. K., #ij%) . 7KFE 45K 20 25 11 50 910 ok 5T 26 [ 15 S AR I H R 1R B
Huly (NCBI). $UREST YA RE K 4 2R 1 B8R IE THU R T 5 S %I (TAIR,  https://www.arabidopsis.org/).
12 LBD H#REFEEMNEESEARELERS

DL LBD b Jciia), $8R3H LBD 7EI B 7 i 19 10 SR 9w i F %1 (CDS), I F #i% 10 £3E M1
FASTA #& R AUL RS . KRR A3 09 10 430G I d i 7 5] 3 i A i NCBI-BLAST 2.9.0 4k {4} f) BLASTX
PS5 1.1 3R R R A E AR PP T RITR LT, 78 Pfam B4R 2P H R 3% LOB 25438 i Fh 1 3¢
4, 322k LBD & (5% 51 1 HMMER #4:C fifi Y o B /R B R AR I B0k i 6 11 LBD (9, FIH
ExPASy &5 [ FTFE L /A 3 Xof 2 1 5 70 A 7 B JoT 1 26 e T3 #T o
1.3 LBD EFAHLL RS

T MCSCAN FAFP, g 378 L AZ Bk 42 5L [ 4 A% R 4 i 7 5] CDS SCAA 13k PR 41 7 B¢ GFF SCAF
AIAT Pairwise Synteny Search #2/7, 1531 Anchor Pairwise 255 4 30 />3 R A i i U8 /N A B block,
TEAJ5 4 gene block 13-4k 1.2 % 21 LBD &
1.4 LBD EESEFJILLF

FIH] ENSEMBL 1) CLUSTALW #4525 3R B 52 25 iie LAk LBD BefH i 47T 2 834 Fu T,
FeRH IS B ALN 3% A % ENDscript I’ 35 #:47 22 691 Hex i al #i 4k
1.5 LBD EFEZR4LAE  EEEHMERF

FIIH MUSCLE v3.8.31 445 4333 %5 AR B 52 4% 5T LA BE RN 547 240 LBD B (1 & H 57
GV AT Z2 7 A FE X o AR A 1 2 7 51 bR &5 R SO/ i ] FastTree V2.1.11 34454 1) JTT+CAT 553
PRI AR, RIS A SCH3E 33 Evolview £ 2k 50 nl Ak . e SARE B 12 T 27 1L ik ik
IRl 2H 25 ¥4 1 B¢ GFF 04, F£#]H Gene Structure Display Server 2.0 75£& /4557 A #i 4k LBD 3[Rl 2544 1%
7E MEME W3 FA% 52 J558 LBk AR BP9 A0 A By
1.6 LBD EREFTXZEXHH

Ik S5 21 J IR I ) 598 A NCBI (https://www.ncbi.nlm.nih.gov/) PRINA435846 T 1) SRA %4 4 $k I
SRR6793964, SRR6793963, SRR6793962. SRR6793961., SRR6793960., SRR6793959, SRR6793958.
SRR6793957, SRR6793956, SRR6793955. M GIGADB (http://gigadb.org/) FK I 5E L AZ Ak 4= 5L K 41551
FIHE R 41 7 B GFF X, A fastp B4 E T ¥ Fad 3§, STAR #FHEAT 81 EL X, RSEM AR {4 3
PIEAT R oM, TH0R TPM A Az Al 3 PR SR A HE o 75 3] i 2R B0 il o R B0 b (EEA T X 8K
B3 J5 A pheatmap 25 il F 5 K]

2 HERESN

2.1 LBD EEEEESEHRBUERS

i i BLASTX #Jffi i LBD AY[RIUREEIN, 248 HMM-SEARCH R /52 ppr ffii e, iR AY 10 44 b
Ak 45 551 4% LBD JFEPH (36 1), bR iirh LBD BH 8 2 IC IR Y 4.46 fi5 . kMY 1.61 4%, #E
033 AT R AN R S by DA AT AT R ) A A OGRS RS ST LA B B D 4 GFF TERESCI, R B
H pecanl.BD50 ., pecanLBD51 Fl pecanL.BD52 55 3 A3 FJEN T scaffold 123681 [ JH HR B & JL A

MCSCAN 2 M1 i . W52 IR AL 3EAT 211 A IRZRME X e, fE sk Se L2 P ) IX e P 3R 3 T
13 % 75 7T fig 4 56 DX 48 n A% 3 1 b & AE B & WY IR R LBD 4 KX 2 pecanLBD1 Ml pecanLBD25 .
pecanLBD4 F1 pecanLBD17 . pecanLBD5 Ml pecanLBD16, pecanLBD11 Fl pecanLBD33. pecanLBD11 Fl
pecanLBD32 . pecanLBD12 H1 pecanLBD33 . pecanLBD12 F pecanLBD32 . pecanLBD14 H1 pecanLBDA3
pecanL.BD14 1 pecanlL.BD42 . pecanl.BD19 Hl pecanLBD26. pecanLBD20 Fl pecanlL.BD29. pecanlLBD21
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Table 1 Identify result of LBD genes in multi-species
H R B
YERT - — — -
A JCiE 5 R R KA WRIT % PN bk LBk e bk
BLASTX 90 45 51 61 91 98 153 87 89 80
HMMER 50 26 35 29 58 57 116 72 56 52

Ml pecanLBD36. pecanLBD34 F pecanLBDA41, 2% 4y 45 2 e 23 4>, 5 i 5 LBD &K 1Y
44.2%, XU T RRE R AUIAE 0l LBD JEP SRS 2 145k,

W BACPE M (G5 2): fEEIERREE . T SR AL ARE RBCRIIR T RS DT T AR 22
St EEERRBCGE N 92~326 1>, KA 170~300 45 SFHLEN 4.48~9.85, >7.5 A 244>, ZAEmE
WHIN; ARERB<40 1A 514, MEEEAR; >40{0 14, MAREEAR; EHBRIED &R
k£ <100, AHKMEAT, A pecanLBDSO0 fili 72 50>100, FoEK¥EE AR,

22 FHERWLZKLBD BEERZELZE EREHWIERF S

wmE 1 s 52 A IRk LBD JER R AL 325 Group I . Group Il . GroupIll . H:+', Group |
A ®ZIM 334 LBD K, BRI AEAH T LBD FERF{E S M AR E AT EEIGE. Group | A
1 6175 1 5 30 58 A AR R B9 3L K pecanLBD22 1 pecanLBDAS, FEEATES AL A SR 5, 1
pecanLBDA1 ALK BEIR B 3.7346, J& Group I HAHXT FHAth LBD JE [H AR A2 B e K. Group I 4f
oh 3 T HEE, Hod Sub group I 1 Sub group Il (1 2E LA AR X 85, PG 9 ML REAS S AN K 1T
Sub group Il A B W it fb AR S5, H i pecanLBD6 HIFL KR 6.2748, J& Sub group I HH 748 5 f K IH FE
EAREC &M T e LA R . Group N2 3 B ARSFIY—32, HH Y pecanLBD9 HH K
TEFTAT 52 4> LBD £ K, 1K 6.764 2.

e 2 52 A e A Mk LBD 2 Iy o Hr 45 SR o . SRR BT 10 P IF v 44
MotifI~Motif10, X§ LBD ¥4 5K TR IEREE A 3 1HF: Motifl 7 GAS(Gly-Ala-Ser) H & B2 {45745
45 Motif 2 14 58 2 1 1w B AR SF I CX,CX(CXaC REAR 254, 38 HLA 245 4 5 8 DNA J7 31 1Y fig
Motif 3 AZE G RR T EELE A (LXLX5LXL). Motifl F1 Motif3 11:7: 2 il 45 th -R2 fie 25 4 1) 25 14 B A0 B4R
Mo 524 i7e A%k LBD JE A v i 39 4> B AT 58 5 i Motifl, Motif2 F1 Motif3 f I Fr & 7 2544 5 M
pecanLBD34 . pecanLBDA1 I pecanLBD9 Tr. #t 1k it # v & K T Motifl ) GAS H 2 IR f& 57 45 14 5
pecanLBD6 ., pecanLBD19 . pecanLBD26. pecanLBDA5. pecanLBD37. pecanLBD2 # pecanLBD3 %K T
Motif3 5 zipper-like 454 (LX,LX;LXcL), JLAFE A GAS 45 HI{H B 23226 T 7 Motif] 45 &7k
JA -2 R U B SS A T RE s pecanLBDS0 W 2K T A LY, FIRETEZR T LBD HE K 1 HEA T BE .

S S5 K Hr o WSS IRk LBD B — R BA 1~3 AR . Hh pecanLBDA1~pecanLBD52
#HEA 1 NN T Bk pecanLBDAT H 2 ASMNE FBRAM), HH#EET Group | 5 HA 3 MMEFRYFEH
A pecanLBD3 . pecanLBD34 Fll pecanLBD9, TERISHATH 35 T4 LBD BEHA A 2 Mo+, &
JF A #ESE ILZ AL LBD B 1Y 67.3%, HIG, W52 ILAZHE LBD % 5k R 1 R R 2 B B R fksy, A
AR | BEZEH, PATIT & 4% LBD /Y EE IRk, MiH KA R0/ Nl EE 2 2K T FOk
0 R D BE B AL R D R
2.3 ERE LBk LOB 418 % 5 5 L xd

X 52 AMEFELLIAZBE LBD #e 53 [N 1~ £ N 19 LOB 2K F IR 5 R 22 F7 1 LU (151 3) &8 : LOB it
SERI T 3 MRS PSRN KB 16 DMEIEIRIY CX,CXCX5C BHELEHE . K 50 42k
R ) H &2 GAS S5 LXLXGLX L 25 S R s 45 . Hid pecanLBD50 il pecanLBD21 584k 2k T 5
Ta 5 H TR A 1 H 2R GAS 4544, 1 HL A% LBD HEEFS 454 W & 047 TR 1A KA ek sl 848
BOMARSE o H Z R GAS 45 ¥ #H XF #F 15 45/ 8 S F2 B 8 K, Group | ' pecanLBD23~pecanLBD47
pecanLBD10, pecanLBD51 % £ T 1~2 4 2 & R 19 2 5% , Group Il ' pecanLBD6. pecanLBD19,
pecanLBD26 ., pecanLBD45, pecanLBD37. pecanLBD2. pecanLBD3 55§ 7 ™% SE K -F GAS H AN AR %
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Table 2 Physicochemical properties of LBD transcription factor family protein in C. illinoensis
HAB AR T EAD  MNEERAL MRMEEUERRAS IR ARERE IRRE BTk

pecanLBD1 210 23 309.19 8.24 17 19 47.65 73.52 —0.485
pecanLBD2 208 22 353.77 7.55 20 21 58.32 88.65 0
pecanLBD3 288 31617.01 8.99 29 35 61.92 76.88 —0.326
pecanLBD4 223 24 069.37 7.69 17 18 73.89 77.89 —0.171
pecanLBD5 188 20 808.56 7.63 17 18 67.24 69.15 —0.490
pecanLBD6 260 28 451.22 8.23 31 34 52.55 69.38 —0.501
pecanLBD7 156 17 540.20 9.03 12 18 55.87 78.91 —0.235
pecanLBD8 172 18611.24 8.59 14 17 61.24 70.35 —0.238
pecanLBD9 276 30985.11 8.55 28 32 30.84 76.96 —0.522
pecanLBD10 326 36 029.86 6.91 23 22 64.45 77.58 —0.472
pecanLBDI11 204 22 376.57 7.53 18 19 60.78 77.99 —-0.233
pecanLBD12 232 25 857.68 5.90 21 14 50.52 65.22 —0.425
pecanLBD13 170 18 808.03 6.42 18 17 65.04 57.47 —-0.607
pecanLBD14 202 21 823.68 8.59 14 17 57.41 80.20 —0.175
pecanLBD15 203 23 706.08 8.15 27 29 52.00 77.39 —0.556
pecanLBD16 191 20998.77 6.08 19 17 70.05 72.04 —0.423
pecanLBD17 230 25054.58 9.22 17 23 78.94 70.04 —0.284
pecanLBD18 172 18 626.23 8.82 14 18 67.64 73.14 —0.296
pecanLBD19 306 33113.72 7.95 33 35 46.03 81.54 —0.280
pecanL.BD20 162 18 029.72 6.70 14 14 51.76 88.52 —0.133
pecanLBD21 127 14 182.02 4.48 14 7 36.18 92.20 —0.246
pecanLBD22 176 19 971.98 5.17 25 18 44.88 80.34 —0.186
pecanLBD23 130 15042.74 9.84 10 25 45.43 77.23 —0.541
pecanLBD24 162 18 285.75 8.23 13 15 57.65 78.40 —-0.337
pecanLBD25 214 23771.70 8.25 17 19 49.42 74.44 —0.472
pecanLBD26 310 33 384.03 8.22 34 37 47.44 80.87 —-0.302
pecanLBD27 168 18 892.28 6.28 17 13 72.86 63.87 —0.476
pecanLBD28 215 23 539.68 5.33 18 14 75.47 70.88 —-0.272
pecanLBD29 167 18 504.18 6.94 15 15 59.00 81.80 —-0.217
pecanL.BD30 176 19230.73 6.50 18 17 69.15 73.75 —0.242
pecanLBD31 169 18 881.58 6.49 17 16 51.28 79.59 —0.219
pecanLBD32 236 26 157.91 5.74 22 13 46.73 65.76 —0.405
pecanLBD33 213 23 405.50 7.06 19 19 65.23 67.37 —0.380
pecanLBD34 326 37266.20 5.47 54 35 49.05 74.29 —0.813
pecanLBD35 251 27236.49 6.44 24 22 59.55 80.08 —-0.322
pecanLBD36 228 24 949.42 6.29 17 16 83.40 71.05 —-0.271
pecanLBD37 228 24709.22 8.06 22 24 59.20 76.14 —0.244
pecanLBD38 216 23 449.53 6.03 17 13 64.11 75.05 —-0.227
pecanLBD39 158 17 663.15 6.27 15 13 53.44 80.25 —0.243
pecanLBD40 221 24 171.04 4.97 21 12 58.45 78.60 —0.143
pecanLBD41 265 30 244.09 6.42 33 29 46.86 77.66 —0.594
pecanLBD42 237 24 801.38 8.20 13 15 69.07 79.87 —0.065
pecanLBD43 213 23 452.55 6.74 19 18 56.45 80.61 —0.203
pecanLBD44 224 24 373.77 8.93 17 22 69.41 73.62 —0.276
pecanLBD45 202 21927.15 8.56 19 23 54.66 83.47 —0.159
pecanLBD46 221 24 114.37 9.01 18 23 73.18 66.29 —0.421
pecanLBD47 289 32 466.21 5.27 29 21 67.19 65.92 —0.600
pecanLBD48 176 19971.98 5.17 25 18 44.88 80.34 —0.186
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Table 2  Continued
Sl FHEMBELU AFR/AD BRI WMEERA ARERE BIRE LTk

pecanLBD49 170 18 770.95 6.19 19 17 60.44 55.18 —0.615
pecanLBD50 92 10 319.08 6.26 11 10 39.17 115.65 0.018
pecanL.BD51 313 34 650.03 7.29 20 20 64.34 73.07 —0.490
pecanLBD52 320 35091.25 6.83 23 21 66.59 67.53 —0.593
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Figure 1 Phylogenetic tree constructed based on the full-length sequences of pecan LBD genes using JTT+CAT algorithm with FastTree software
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Figure 2
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Figure 3 Multiple sequence alignment of LOB domain in C. illinoensis transcription factor family
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