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摘要：【目的】探讨不同肥料对作物养分吸收及农田氮磷流失的影响。【方法】利用水稻 Oryza sativa -白菜 Brassica

pekinensis 轮作田间小区试验, 设置不施肥 (ck)、纯化肥 (FP)、半替代有机肥 (50% 有机肥替代，CM)、炭基肥 (CC)4 个处

理，研究不同处理下水稻和白菜产量，作物氮磷吸收量和氮磷径流损失量的变化。【结果】与 ck 相比，施肥条件下水稻

产量显著增加了 33.5%~42.5%(P＜0.05)，白菜产量显著增加了 26.0%~31.8%(P＜0.05)，水稻氮吸收量显著提高了

41.9%~57.4%(P＜0.05)，磷吸收量显著提高了 22.8%~41.7%(P＜0.05)，但 3 种施肥间没有显著差异。与 ck 相比，3 种施

肥条件下白菜氮吸收量提高了 33.8%~53.6%，CM 处理显著高于其他 (P＜0.05)，磷吸收量提高了 163.5%~267.8%，增幅

从大到小依次为 FP、CM、CC、ck，不同处理间差异显著 (P＜0.05)。稻季 3 种施肥处理的氮磷径流流失量为 13.49~

15.32 和 2.19~2.61 kg·hm−2，径流率为 3.5%~4.2% 和 2.0%~2.4%，菜季氮磷流失量为 6.33~6.82 和 0.35~0.44 kg·hm−2，径

流率为 1.3%~1.6% 和 0.1%~0.4%，不同施肥处理间差异不显著 (P＞0.05)。【结论】相同养分当量情况下，纯化肥、半替

代有机肥、炭基肥对稻菜种植模式氮磷养分吸收及径流流失无影响。图 3 表 4 参 25
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Abstract: [Obejective]  This  study  aims  to  explore  the  effect  of  different  fertilization  on  nitrogen  and
phosphorus  content  in  farmland  in  Xianju  County,  Zhejiang  Province.  [Method]  A  rice/Chinese  cabbage
rotation experiment  was conducted to  study the change of  four  fertilization treatments  to  crop yield,  fertilizer
absorption,  runoff-driven N and P loss.  The four  treatments  were no fertilizer  application (ck),  pure chemical
fertilizer  application  (FP),  50%  organic  fertilizer  replacement  (CM)  and  carbon-based  fertilizer  application
(CC). [Result] Compared  with  ck,  the  yield  of  rice  and  Chinese  cabbage  under  three  fertilization  increased
significantly by 33.5%−42.5% and 26.0%−31.8%, respectively. But there was no significant difference among
three  fertilizer  treatments.  Compared  with  ck,  nitrogen  absorption  in  Chinese  cabbage  increased  by
33.8%−53.6%,  whereas  those  of  CM  treatment  were  significant  higher  than  others.  Phosphorus  absorption
increased by 163.5%−267.8%, and the increase between different treatments was CM＞FP＞CC＞ck. However, 
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there  was  no significant  difference among each treatment  (P＜0.05).  For  rice,  runoff  volume of  nitrogen and
phosphorus  under  three  fertilization  treatments  was  13.49−15.32,  2.19−2.61  kg·hm−2,  and  runoff  rate  was
3.5%−4.2%, 2.0%−2.4%, respectively. For Chinese cabbage, nitrogen and phosphorus loss was 6.33−6.82, and
0.35−0.44 kg·hm−2,  runoff rate was 1.3%−1.6%,  0.1%−0.4%,  respectively.  However,  there was no significant
difference  among three  fertilization  treatments.While  maintaining  the  same nutrient  equivalent.  There  was  no
significant  difference  betweenpure  chemical  fertilizer  application,  50%  organic  fertilizer  replacement  and
carbon-based fertilizer application. [Ch, 3 fig. 4 tab. 25 ref.]
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农田氮磷流失是农业面源污染的主要来源。农业生产中，肥料的不合理施用是农田氮磷流失的主要

原因，肥料施用后未能被作物吸收的部分氮磷通过径流进入河流等水体，造成氮磷流失[1]。因此，合理

控制施肥量、调整肥料种类是减少氮磷流失的必要手段[2−3]。在太湖、巢湖、滇池等农业集中区域开展

的稻田养分流失研究 [4] 表明：相比于习惯性施肥 (化肥 )，有机肥 50% 替代氮肥可减少稻季总氮

(5.49%)、总磷 (23.32%)径流流失量，显著降低菜-稻周年总磷径流流失量 (45.66%)[5]，而水稻 Oryza
sativa 产量未显著下降[6]。研究[7] 发现：随着生物质炭施用量的增加，农田径流氮磷流失降低；与纯化肥

相比，总氮流失量减少 1.77~6.96 kg·hm−2，流失率下降 0.29~3.62%，总磷流失量减少 0.32~0.51 kg·hm−2，

流失率下降 0.12~0.44%。与纯化肥或纯有机肥相比，有机肥和化肥配施可显著提高作物产量[8]。生物质

炭与肥料复合制成的生物质炭基肥可以改良土壤，促进作物生长和增产，提升农用效益[9]。炭基肥施用

对不同作物增产效益不同[10]，可使玉米 Zea mays 增产 10.02%~24.32%，水稻增产 11.54%~13.00%。目前

关于有机肥和炭基肥配施影响农田氮磷流失的研究较少，不同肥料对于农业面源污染的影响趋势尚不明

确。本研究拟探讨在相同氮磷施用条件下，纯化肥、半替代有机肥、炭基肥 3种不同肥料施用对水稻-
白菜 Brassica pekinensis 养分吸收及氮磷流失的影响，为控制农业面源污染提供参考。 

1    材料与方法
 

1.1    试验地概况

试验地浙江省台州市仙居县横溪镇下陈村 (28°46′9.32″N，120°28′49.04″E)属典型亚热带季风气候，

年平均气温为 17.7 ℃，年平均降水量为 1 796.8 mm，全年无霜期 240.0 d。土壤类型为水稻土，土壤 pH
4.99，有机质、全氮、全磷质量分数分别为 44.39、2.78、0.51 g·kg−1，碱解氮、有效磷、速效钾质量分

数分别为 83.90、19.90、97.30 mg·kg−1。 

1.2    试验设计

采用随机区组设计，4个处理，3次重复，共 12个试验小区。各小区面积 30 m2，随机排列，各小

区间用深 50 cm宽 35 cm的水泥田埂隔离以防水肥渗漏。同时各小区配置 1个径流池，池深 1.3 m，长

3.0 m，宽 1.0 m，试验地外围设置栅栏保护。试验于 2019年 5月至 2020年 5月进行，供试水稻品种为

嘉丰优 2号，白菜品种为早熟 5号。

设不施肥 (ck)、习惯性纯化肥 (FP)、半替代有机肥 (50% 替代，CM)、炭基肥 (CC)等 4个处理。通

过不同肥料配比配施，保持不同施肥处理相同养分当量，参考当地施肥氮磷习惯投入量，各小区稻季氮

磷投入量分别为 270.0、75.0 kg·hm−2，菜季氮磷投入量分别为 184.5、51.3 kg·hm−2。不同处理肥料施用

量及施肥时间如表 1所示。稻季水稻于 2019年 5月 8日播种幼苗，6月 8日移栽秧苗，7月 16日涸

田，8月 2日复水，10月 13日收获。菜季白菜于 2019年 10月 3日播种，2020年 5月 10日收获。 

1.3    样品采集及测定 

1.3.1    植物样品采集及测定    采用全收获法测定不同小区水稻、白菜产量。不同作物收获时，每个小区

中间位置取作物样 5株 (丛)，带回实验室，用水清洗后，置于 105 ℃ 干燥环境中 30 min，再置于 75 ℃
烘箱中烘干 48 h，在粉碎机中研磨过 0.149 mm筛，待用。植物全氮采用凯氏定氮法测定，全磷采用氢

氧化钠 (NaOH)熔融-钼锑抗比色法测定。 
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1.3.2    土壤样品采集及测定    轮作结束后，每个小区均用 5点采样法采集表层土壤样品 (0~30 cm)约 1 kg
带回实验室。土壤样品经室内风干后，过 2或 0.149 mm筛，待用。土壤 pＨ采用电位法，有机质采用外

加热-重铬酸钾容量法，全氮采用半微量开氏法，全磷采用硫酸-高氯酸消解-钼锑抗比色法，有效磷采用

0.5 mol·L−1 氯化钾-氟化铵浸提-钼锑抗比色法，速效钾采用 1.0 mol·L−1 中性醋酸铵浸提-火焰分光法测

定，碱解氮采用碱解扩散法。 

1.3.3    径流水样采集及测定    每次大雨或连绵雨期产生径流后，测量径流池中径流量，将池中的水混

匀，用采样器采集 1 000 mL水样，带回实验室；采样后，洗净、抽干径流池后用于下一次径流水的收

集。水样总氮采用碱性过硫酸钾消解紫外分光光度法测定，总磷采用钼酸铵分光光度法测定。 

1.4    数据处理与分析

M =
n∑

i=1
CiVi利用公式 计算氮磷径流量；其中：M 为氮磷的流失量 (kg·hm−2)；Ci 为第 i 次径流水中

氮、磷的质量浓度 (mg·L−1)；Vi 为第 i 次径流水的体积 (L)。计算肥料利用率=[不同施肥处理作物吸收

氮 (磷 )量 (kg·hm−2) −  对照作物吸收氮 (磷 )量 (kg·hm−2)]/施入氮 (磷 )量 (kg·hm−2)×100%。径流损失

率=[不同施肥处理径流氮 (磷 )流失量 (kg·hm−2) − 对照径流氮 (磷 )流失量 (kg·hm−2)]/施入氮 (磷 )量
(kg·hm−2)×100%。

试验数据应用 SPSS 22进行方差分析和统计检验，使用 Excel 2016处理数据并作图。 

2    结果与分析
 

2.1    不同施肥处理对土壤理化性质的影响

由表 2可知：稻 -菜轮作当季结束后，不同处理土壤 pH、有机质、全氮、全磷无显著差异

(P＞0.05)。3种施肥处理土壤碱解氮、有效磷质量分数显著高于 ck(P＜0.05)，不同施肥处理无显著差

异；FP、CC处理土壤速效钾质量分数显著高于 ck(P＜0.05)。 

2.2    不同施肥处理对作物产量的影响

3种施肥处理显著提高作物产量 (图 1)，与 ck相比，水稻产量显著增加 33.5%~42.5%(P＜0.05)，白

菜产量显著增加 26.0%~31.8%(P＜0.05)。
 

2.3    不同施肥处理对作物氮磷吸收的影响

与 ck相比，施肥显著提高水稻地上部分氮吸收量 (P＜0.05)，但不同施肥间无显著差异 (P＞0.05)。

表 1    稻-菜种植模式不同肥料处理施用量及时间
Table 1    Rice-vegetable mode different fertilizer application amount and time

处理
水稻季/(kg·hm−2) 白菜季/(kg·hm−2)

基肥(2019年6月5日) 追肥(2019年6月23日) 基肥(2019年10月23日) 追肥(2020年1月5日)

ck 0 0 0 0

FP 配方肥750.0，钙镁磷肥125.0 尿素290.3，氯化钾24.3 配方肥450.0，钙镁磷肥127.1 尿素225.0，氯化钾34.7

CM 菜籽饼2 700.0，钙镁磷肥62.5 尿素290.3，氯化钾198.4 菜籽饼1 620.0，钙镁磷肥42.7 尿素225.0，氯化钾135.6

CC 炭基肥1 500.0 炭基肥1 025.0

　　说明：配方肥m(N)∶m(P2O5)∶m(K2O)=18∶8∶18；菜籽饼肥m(N)∶m(P2O5)∶m(K2O)=10∶5∶2；炭基肥m(N)∶m(P2O5)∶m(K2O)∶m(C) =
　　　　　18∶5∶10∶25；氯化钾中K2O质量分数为62%；尿素中N质量分数为46%；钙镁磷肥中P2O5质量分数为12%

表 2    稻-菜季结束后土壤性质
Table 2    Soil properties after the rice-cabbage season

处理 pH 有机质/(g·kg−1) 全氮/(g·kg−1) 全磷/(g·kg−1) 碱解氮/(mg·kg−1) 有效磷/(mg·kg−1) 速效钾/(mg·kg−1)

ck 5.04±0.22 a 44.50±1.10 a 2.76±0.05 a 0.49±0.04 a 94.50±9.83 b 16.10±1.36 b 76.10±7.77 b
FP 4.97±0.13 a 45.00±3.71 a 2.81±0.32 a 0.48±0.02 a 101.30±13.11 a 22.70±2.98 a 88.45±18.17 a

CM 5.07±0.24 a 45.10±1.12 a 2.78±0.16 a 0.48±0.02 a 98.60±15.67 a 20.30±3.00 a 81.60±14.57 ab

CC 4.91±0.20 a 43.00±4.43 a 2.80±0.15 a 0.50±0.02 a 104.30±15.18 a 20.60±2.26 a 91.35±16.37 a

　　说明：数据为平均值±标准差；同列不同字母表示处理间差异显著(P＜0.05)
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由图 2可知：稻季不同施肥处理的水稻氮吸收量为

79.89~125.38  kg·hm−2，比 ck显著提高 41.9%~57.4%
(P＜ 0.05)；水稻地上部分磷吸收量为 23.78~33.69
kg·hm−2，比 ck显著提高 22.8%~41.7%(P＜0.05)。

菜季不同施肥处理的白菜地上部分氮吸收量为

75.67~116.20 kg·hm−2，比 ck显著提高 33.8%~53.6%，

CM处理氮吸收量显著高于其他处理 (P＜0.05)。白菜

地上部分磷吸收量从大到小依次为：CM、FP、CC、
ck，不同处理差异显著 (P＜0.05)。与 ck相比，施肥

处理磷吸收量分别提高 267.8%、217.9%、163.5%。

稻-菜轮作肥料氮磷利用率如表 3。稻季氮肥利用

率为 13.0%~16.8%，不同处理无显著性差异，磷肥利

用率为 7.2%~13.2%，其中 CM显著高于 FP、 CC
(P＜0.05)。菜季氮肥利用率为 13.9%~22.0%，CM显著高于 FP、CC(P＜0.05)，磷肥利用率为 23.7%~38.8%，

从大到小依次为 FP、CM、CC，不同处理间差异显著 (P＜0.05)。 

2.4    径流水中氮磷质量浓度的变化

稻-菜轮作全季共出现 10次径流，其中稻季 7次，菜季 3次，不同时间径流水中氮、磷质量浓度变

化不同。由图 3可知： CC处理水中氮、磷质量浓度以 2019年 6月 21日的径流为最高，而 FP、CM处

理水中氮、磷质量浓度则以 6月 26日的径流为最高；随着时间推移，不同施肥处理径流水中氮、磷质

量浓度均呈下降并保持相对稳定的趋势；不同处理氮质量浓度在 2020年 3月 16日又有所上升，达到第

2个峰值，随后重新出现下降趋势。相比之下，不同采样时间 ck处理径流水中的氮、磷质量浓度相对稳

定，分别为 0.91~2.35和 0.11~1.57 mg·L−1。 

表 3    不同施肥处理下稻-菜全季中氮磷的利用率
Table 3    Utilization rate of nitrogen and phosphorus fertilizer in the whole rice-vegetable season

处理
稻季 菜季 全季

氮/% 磷/% 氮/% 磷/% 氮/% 磷/%

FP 13.01±0.98 a   8.39±1.04 b 14.32±1.53 b 38.84±1.65 a 13.85±1.97 b 27.66±2.11 a
CM 16.83±1.03 a 13.24±1.12 a 22.02±1.27 a 31.57±1.37 b 19.72±1.45 a 22.44±1.67 b

CC 11.76±0.96 a   7.23±0.88 b 13.94±1.07 b 23.71±1.41 c 13.17±1.08 b 16.85±1.37 c

　　说明：数据为平均值±标准差；同列不同字母表示处理间差异显著(P＜0.05)
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图 1    不同施肥处理下的作物产量
Figure 1    Crop yields with different fertilization
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图 2    不同施肥处理下稻-菜地上部分的氮磷吸收量
Figure 2    Amount of nitrogen and phosphorus absorbed in different fertilized rice-vegetable land parts
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2.5    稻-菜轮作农田径流氮磷流失量及流失率

如表 4所示：稻季不同施肥处理氮流失量为 13.49~15.32 kg·hm−2，流失率为 3.53%~4.18%，磷流失

量为 2.19~2.61 kg·hm−2，流失率为 2.04%~2.37%；不同处理间差异不显著 (P＞0.05)。菜季不同施肥处理

氮流失量为 6.33~6.82  kg·hm−2，流失率为 1.31%~1.62%，磷流失量为 0.35~0.44  kg·hm−2，流失率为

0.09%~0.39%；不同处理间差异也不显著 (P＞0.05)。 

3    讨论
 

3.1    不同施肥处理对作物产量及氮磷吸收的影响

有机肥部分替代化肥可以改善土壤氮素供给状态，促进作物对氮素的吸收，达到增产目的[11]。生物

质炭基肥可以有效控制水稻的无效分蘖，有利于提高水稻群体质量[12] 和作物净光合速率[13]；连续施入炭

基肥及生物质炭还可有效提高土壤铵态氮含量[14]，从而提高水稻产量。本研究表明：3种施肥处理下作

物产量无显著差异，主要原因应为试验地土壤氮磷含量较高。3种施肥处理对水稻增产效果显著优于对

白菜增产效果，与刘琪琪[15] 研究肥料对不同作物增产效果不同的结果一致。

作物的养分含量及积累量可以反映土壤的供肥能力。与对照相比，3种施肥处理作物地上部分氮磷

吸收量显著提高，说明施肥对维持作物生长，满足作物营养需求效果显著，这与王新霞等[16]、杜加银等[17]

研究结果相似。3种施肥处理下作物地上部氮磷吸收量无显著差异，这与范星露等[18] 研究结果相似。

半替代有机肥的氮利用率显著高于纯化肥和炭基肥，炭基肥的磷利用率显著低于纯化肥和半替代有

机肥，这与张萌等[19] 发现生物质炭基肥肥料利用率高于常规施肥的结果不符，主要原因在于炭基肥制备

过程中，不同碳氮比影响了炭基肥的缓释效果[20−21]，造成磷的利用显著低于其他处理，具体影响还有待

于相关的试验研究。 

表 4    稻-菜轮作不同处理径流氮磷损失量及径流流失率
Table 4    Amount of nitrogen and phosphorus loss and runoff loss in different treatment stakes in the rice-cabbage season

种植模式 施肥处理
氮 磷

流失量/(kg·hm−2) 径流率/% 流失量/(kg·hm−2) 径流率/%

稻季

FP 14.24±0.86 a 3.81±0.92 a 2.33±0.64 a 2.11±0.68 a
CM 13.49±0.64 a 3.53±0.79 a 2.19±0.62 a 2.04±0.94 a

CC 15.32±1.01 a 4.18±0.88 a 2.61±0.89 a 2.37±0.83 a

菜季

FP 6.33±0.46 a 1.31±0.21 a 0.44±0.21 a 0.39±0.11 a

CM 6.51±0.87 a 1.49±0.37 a 0.35±0.13 a 0.09±0.07 a

CC 6.82±0.72 a 1.62±0.48 a 0.36±0.17 a 0.21±0.09 a

　　说明：数据为平均值±标准差；同列相同字母表示稻季或菜季不同处理间差异不显著(P＞0.05)
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图 3    不同施肥处理径流水中氮磷的质量浓度
Figure 3    Nitrogen and phosphorus concentrationins in different fertilization treatment run-off waters
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3.2    不同施肥对径流氮磷流失的影响

稻季首次径流，CC处理的氮磷质量浓度显著高于其他处理 (P＜0.05)，第 2次径流，FP、CM处理

的氮磷质量浓度显著高于 CC(P＜0.05)，显著高于首次径流 (P＜0.05)。主要原因是施肥处理方式和施肥

时间不同；CC处理的氮磷肥于 6月 6日一次性施入，单次施肥量过大，是首次径流水中氮磷质量浓度

显著高于其他处理的原因，而 FP、CM处理于 6月 21日追肥，6月 26日产生的径流水中氮磷质量浓度

达到峰值且显著高于 CC。提示炭基肥应当视情况斟酌施入，以避免大径流造成养分流失。

3种不同施肥方案通过径流形式流失的氮磷总量无显著差异。刘红江等[22] 发现：有机-无机配施可以

减少氮磷流失量，但有机-无机配施在达到一定比例后，氮磷流失量随肥料中有机占比提高而增加，过

高的有机投入同样会增加氮磷流失的风险。本研究中，炭基肥为单次施入，当首次极大径流出现时，高

质量浓度的炭基肥并不能减少农田氮磷流失。研究区夏季多暴雨，径流产生频繁，施肥后如遇强降雨，

会引起养分大量流失[23]。因此需要根据气象条件，选择合适的施肥时间。

与纯化肥相比，半替代有机肥、炭基肥在制备时使用秸秆等废弃物，可以有效回收部分通过植物废

弃物流失的氮磷，减少面源污染。目前符合国家标准的炭基肥中，秸秆炭质量分数约 16%[24]，同时炭基

肥原料丰富，作物秸秆及动物粪便均可使用[21]。因此尽管对径流流失量影响不大，但半替代有机肥、炭

基肥对减少氮磷流失更有利，与刘辉等[25] 推算优化施肥下氮磷潜在流失量低于习惯性化肥施肥，氮潜在

流失率大于磷潜在流失率的结果相似。 

4    结论

相同养分当量投入下，纯化肥、半替代有机肥、炭基肥对作物氮、磷吸收和肥料利用率无显著差

异；3种肥料施用后农田中氮磷径流流失量和流失率的差异也不显著。相同氮磷量投入下，3种肥料对

农田氮磷流失影响结果差异不显著。
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