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Ecological effects of microplastics contamination in soils
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Abstract: Large amounts of microplastics have been accumulated in soils and their degradation is relatively
slow. The residual time of microplastics in soils could be extended to decades or even over a hundred years.
Therefore, the ecological effects of long-term residual of the microplastics in soils has been of concerned widely
in recent years. Published papers related to the microplastics and their effects in soils were collected and
introduced in order to make a full review in the field. The research advances were presented based on the
different ecological receptors, which included change of soil physical environment due to the accumulation of

microplastics, ingestion of microplastics by invertebrates from soils and their effects on the enteric

Wk H: 2020-11-24; &[0 H]: 2021-03-03

HEWH. BEEHRBFESEHH A 41771351, 41877142, 41991330); Wiil& AR B ¥ E 4 KB O
(LZ19D10001); #WiLRMK2EANA SR 305 H (2017FR021)

fEZ T T (ORCID: 0000-0003-2575-6560), MIF IS5 YLif57 . E-mail: 1143896378@qq.com. lI5/EH
FIF I (ORCID: 0000-0003-2041-2259), ##%, LA I, NFLEARE S REENI . E-mail
hbzhang@zafu.edu.cn


mailto:1143896378@qq.com
mailto:hbzhang@zafu.edu.cn
https://doi.org/10.11833/j.issn.2095-0756.20200729

55 38 557 5 1 SR A RN Y A A AR, 1041

microorganism, response of soil microbial community and soil enzyme to microplastics pollution, plant uptake
of microplastics and their effects. The studies of effects on soil physical environment in the present of
microplastics mainly focus on soil density, soil aggregate composition and water hold capacity. Such effects
were supposed to have further impacts on soil enzyme activity, microbial community composition and even
plant growth based on current limited studies. Many other studies at present were also concentrated on the
migration of microplastics induced by soil invertebrates e.g. earthworm, springtail. Meanwhile, microplastics in
the soil might be ingested by soil invertebrates and subsequently caused some negative effects and influence on
the gut microorganism community of the soil invertebrates. There were also some studies focusing on the
microplastics accumulation through food chain regarding the effects of microplastics on soil animals. For
example, microplastics might be accumulated in chicken through the predation of earthworm by chicken. After
the introduction of current studies, several research proposal were put forward based on the complication of
microplastic’ s properties and the shortage of current researches. These proposal contained four aspects:
(1) development of standard protocols for the study of ecotoxicology of soil microplastics pollution, (2) studying
the interaction mechanism between microplastics and microorganisms, plants and invertebrates, (3) revealing
microbiological mechanisms that regulation of the transformation of materials and microplastics in soils,
(4) exploring plastishere in soils of different ecosystems. All these researches are expected to be supportive to
assessment of the ecological effects of soil microplastics pollution. [Ch, 80 ref.]
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BEGECT ., A, IR AR 7t nT R L AR A T ISR r ) AR 24 1T R ) ke | 45 - g
YA

2.3 TETMREBEMEDITRENR BN

e BN Yy 0 T AR R i S AN R B N RN o WNKTF 1.0 e kg AR B 2R M TOE ) 3 R 5 S e
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BN, PR HRERZE TR, TIERCEYRRA A SR POGER O IR R R A B TS
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M) P4 22 5 AT BB - SV S RN G s e 288 B L2 8 e A e &R 1
3.2 B REMEEN

T IR A I RER ) T B R AR A2 R | ORI | RN R, (I
R OIFEHIBRIE (2000 1~ kg ™) BEEXT HIERRUEY o ZFEME (FE B WA E MR A U R
Mo 5 ARG 7 bR B 0 Z2 P 8 2O AT T X BN GO RS i - 4985 RIS ZE OB YRR e IR T
— U H I B AR MM X R, R DT A, G5 SRR 20 o A I A i 5=
P LRSI 5% MR OB EG , R FUSTA B SO OB R R RO, 3R
WIS A M B A, BURRUE R B 2R R R B BRSE RB: 1% 1 5% AR
FER M 5% MR E LM b AR T MR F e R AEE, (HREm T -2, HhaEs
B[ A% VA OC B4 5 G TR #} Burkholderiaceae, 33X 38 P RUERL AT g s 3 b i AR PG IR0 1, o
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