余杭长乐林场火炬松地理种源试验与选择^{*}

董耀卿 俞建新 张建中 曹建实 傅宏元 (浙江省余杭市长乐林场 余杭 311123) (浙江省林业厅)

摘 要 1982年、1983年及1984年3 个批次共40 个种源的试验结果表明:火炬松不同地理种源间的树高、胸径、材积、干形、造林保存率等均存在显著的差异。产地的地理纬度及热量状况是引起种源变异的主要原因。种源生长量具中等程度遗传力。生长量3性状间有较紧密的相关关系,与干形遗传相关不紧密。试验林3~5年生树高及胸径生长与以后各年龄期的相关紧密,表明5年生时进行选择有一定的可靠性。选择出的9个优良种源,其材积的遗传增益为3.05%~20.39%,有较高的增产潜力。

关键词 火炬松;种源试验;变异;选择;遗传参数中图分类号 S722.7;Q943

火炬松($Pinus\ taeda$) 在美国分布于 14个州,范围 $28^\circ \sim 39^\circ N$, $75^\circ \sim 97^\circ W$,是美国南方重要的速生针叶用材树种,生长快、用途广,适应性强,育苗造林容易。美国早在本世纪 20 年代就开始进行火炬松种源试验,结果表明在许多性状上存在一定程度的地理变异。火炬松在亚热带及部分热带高海拔适生气候区内广为引种,大多表现出其在原产地的许多优良特性。我国引进火炬松已有很长的历史,但前期引种对其地理变异未引起足够重视「」。随着种子的大量进口和林木引种、选育工作的深入,摸清火炬松地理变异规律,选择合适的优良种源,开展全分布区种源试验显得非常必要,并且通过种源试验,可以扩大种质资源,为进一步开展良种选育提供原始材料。

长乐林场引种三松 (湿地松、火炬松、晚松) 已有 30 多年历史。目前已营造三松 472 $\,\mathrm{hm}^2$ (湿地松占 55. 5%,火炬松占 33. 0%,晚松占 8. 5%),占全场山地面积 30. 85%。其中建有火炬松种子园 15. 5 $\,\mathrm{hm}^2$,因建园较迟尚未形成生产力,建有母树林 13. 31 $\,\mathrm{hm}^2$,年产种子 50~80 $\,\mathrm{kg}$,仍满足不了生产上的需求。

该场火炬松地理种源试验最早始于1979年,参试种源4个;1982年与原南京林产工业

收稿日期: 1998-02-14

^{*&}quot;八五"浙江省科技攻关资助项目和"八五"国家科技攻关资助项目

第1作者简介: 董耀卿 男, 1938年生, 工程师

学院育种室合作,进行了9个种源的试验;1983年和1984年参加了中国林科院林研所统一组织的范围较大的火炬松种源试验,参试种源分别为19个和22个。根据多年多批次试验,本文以1983年批次为重点,结合1982年和1984年批次的材料,进行试验结果的分析研究。

1 材料和方法

1.1 试材来源和产地概况

1983 年批次的火炬松种源材料由美国林务局提供,共 19 个产地,分布于美国 9 个州,以广东台山种子园产的湿地松、本地引种的晚松以及本地马尾松作为对照或树种对比。产地的地理分布及气候状况见表 1。

1982 年试验用种为美国国际林木种子公司批量生产的种子,5 个产地种子及我国产4 个次生种源共9 个处理(表 1)。1984 年试验的有美国8 个州22 个产地和湖北产火炬松种子共23 个处理,产地情况见表2。

表 1 1983 年和 1982 年火炬松参试种源产地情况

Table 1	Orimaln	been of	provenances	tested in	1983	and	1982	and	their c	limatec
rabie i	Ongnai p	naces or	pro venances	teste u m	1900	and	1902	and	men c	iiiiiates

年度	种源	产地	经度	纬度	年均温	1月均温	年降水量	夏季降水量
牛皮	代号	<u>ال</u> ال	(°W)	(°N)	/℃	/℃	/ mm	/ mm
	RL01	Virginia	77. 00	37. 50	14 14	3 47	1 089. 41	462
	RL05	N Carolina	78. 00	35 00	17.00	7. 76	1 192. 78	520
	RL06	S Carolina	79. 00	34 00	17. 38	7. 87	1 151. 38	517
	RL08	S Carolina	82. 25	34 25	17. 16	7. 70	1 186. 69	428
	RL09	S Carolina	80. 50	34 00	17. 60	8 25	1 172. 21	522
	RL12	Georgia	84. 75	32 00	17. 71	8 47	1 244. 60	435
	RL14	Georgia	82.00	32 00	19.20	10 40	1 198. 63	546
	RL16	Florida	81. 50	30 50	20 52	13 10	1 322. 83	707
	RL17	Florida	82.00	29 00	22 28	16 40	1 301. 24	751
1983	RL18	Alabama	88. 00	32 00	18 65	10 00	1 458. 21	459
	RL19	Alabama	86. 75	31 50	18 76	10 30	1 434. 59	485
	RL20	Georgia	83. 50	33 50	17. 66	8 69	1 188. 47	416
	RL23	Alabama	87. 00	31 50	18 65	10 00	1 458. 21	459
	RL24	Alabama	88. 00	33 00	18 5 9	9 41	1 350. 26	397
	RL25	Mississippi	89. 00	31 50	18 5 9	10 30	1 486. 41	478
	RL27	Louisiana	91. 00	30 50	19 53	11 20	1 501. 90	535
	RL28	Louisiana	92.00	31 50	19 69	11 10	1 563. 12	462
	RL30	Louisiana	94. 00	32 00	18 92	9 52	1 325. 63	332
	RL31	Texas	94. 50	31 00	19.58	10 10	1 201. 17	315
	PT01	S Carolina						
	PT02	S Carolina						
	PT03	Mississippi						
	PT04	Mississippi						
1982	PT05	Gergia						
	PT06	安徽马鞍山市林场						
	PT07	安徽泾县马头林场						
	PT08	浙江安吉县						
	PT09	广西柳州广西林校						

表 2 1984 年批火炬松种源地理位置及主要气象因子

Table 2	Orignal	places of	provenances	tested in	1984	and	their clim	at es

— 种 源 号	产地	纬度	经度	年均温	1 月平均 最低温	年降水	6~9月	降水	
号	<u>ال</u> ب	(°N)	(°W)	/℃	1211./ iii./iii.	/mm	降水量 /mm	9/0	/d
L01	Missi ssippi	36. 5	89. 4	17. 3	0 55	1 390	374 4	26 9	215
L02	Missi ssippi	31. 5	89. 8	19 1	4 40	1 490	440 4	29 6	242
L03	Alabama	33. 5	86. 8	16 8	1 54	1 355	421.1	31 1	239
L04	S Carolina	35. 0	81. 0	16 5	1 98	1 150	460 3	40 0	224
L05	S Carolina	33. 1	79. 8	17. 4	2 31	1 150	517. 9	45 0	236
L06	Georgia	33. 5	83. 4	16 8	1 54	1 270	388 5	31 4	217
L07	N Carolina	34. 8	77. 0	17. 5	2 70	1 265	635 0	50 1	237
L08	Louisiana	31. 5	92. 7	18 9	3 08	1 325	332 7	25 1	221
L09	Texas	31. 0	94. 9	19 6	4 95	1 200	336 6	28 0	262
L10	N Carolina	34. 5	79. 0	16 9	1 87	1 210	525 3	43 4	225
L11	S Carolina	33. 0	80. 5	18 0	2 92	1 125	498 6	44 3	241
L12	Georgia	31. 0	81. 5	20 4	7. 48	1 360	741.9	54 6	282
L13	Georgia	32.0	85. 0	17. 7	2 59	1 245	435 9	35 0	249
L14	Florida	30. 5	81. 5	20 5	7. 37	1 325	707. 4	53 4	299
L15	Alabama	32.0	87. 5	18 6	4 24	1 460	459 2	31 4	237
L16	Louisiana	30. 5	91. 0	19 5	6 27	1 500	535 4	35 7	269
L17	Florida	29. 0	83. 0	22 2	11 10	1 265	771 9	60 9	348
L18	Missi ssippi	36. 5	89. 5	17. 3	0 55	1 390	374 4	26 9	215
L19	Georgia	34. 3	85. 3	16 1	-0.11	1 345	397. 5	30 9	217
L20	Alabama	32. 5	87. 0	18 4	3 69	1 363	475 2	34 9	261
L21	Louisiana	31. 5	93. 5	18 9	3 08	1 326	332 7	25 1	221
L22	Texas	31. 5	95. 0	18 5	3 74	1 227	300 5	24 5	236
L23	湖北武昌								

1.2 试验点概况

长乐林场地处中亚热带北缘, $30^{\circ}20'$ N, $119^{\circ}50'$ E,年均温 16.1° C,绝对最高温 40.5° C,绝对最低温 -9.6° C,年均降水量 1400 mm,蒸发量 1200 mm,年均相对湿度 82%,无霜期 240 d。

造林试验地属丘陵山地。平缓坡,海拔 $100 \sim 200 \,\mathrm{m}$,土壤主要为粉砂岩风化、坡积或残积而成的普通红壤或老红壤,土层厚度 $40 \,\mathrm{cm}$ 以上, $pH 4.5 \sim 5.5$,土质较疏松,石砾含量少,排水良好。造林地全垦挖大穴:林地每年松土除草 $1 \sim 2$ 次,常规管护。

1.3 试验设计与分析方法

育苗、造林均采用随机区组设计。1982 年批育苗在大田进行,重复 4 次,造林用 5 株单行小区,株行距 3 $m \times 4$ m,6 次重复。1983 年、1984 年批育苗用塑料袋容器,重复 4 次,造林用 25 株单行小区,重复 4 次,株行距 2 75 $m \times 2$ 75 m。试验区周围设保护行。

性状观测主要包括种子千粒重、发芽势、发芽率、出苗期、生长节律、苗高、苗粗、成苗率及针叶形成期、抽梢期、封顶期等物候因子;幼林期有每年树高和胸(地)径,年生长量规律、病虫害、于形态。对解、心造林成活率和保存率等。House. All rights reserved. http://www.

为使试验调查数据满足方差分析、相关分析正态分布、方差齐性等条件,对百分比数据 作反正弦转换,计算数据开平方转换^[2~6]。

2 结果与分析

2.1 主要性状的遗传变异

2.1.1 生长性状 连续多年调查不同批次种源试验林的生长量。方差分析表明,1983 年批种源不同林龄产地间生长差异持续存在(表 3),并达显著或极显著水平,说明种源间生长量存在差异,优良种源的选择有很好的基础。7 年生时,1984 年批种源产地间树高、胸径、材积生长量同样存在显著差异。

表 3 1983 年批种源逐年生长方差分析 F 值

Table 3	Variance	analysis on	annual	increments	of	provenances	tested in	1983

性	状	苗	期 2年生	3年生	5 年生	6 年生	7年生	8 年生	10 年生
树	高	3. 24 * *	2.00 *	1 64△	2. 12 *	2. 24 * *	3 01 * *	2 44 * *	1. 80 *
胸(牡	也)径			1 14	1. 95 *	1. 78 *	2 03 * *	2 34 * *	2.78 * *
材	积							2 21 * *	2.44 * *

说明: **表示差异达 99%显著水平: *表示差异达 95%显著水平: △表示差异达 90%显著水平

- 2.1.2 千形 根据火炬松树干通直状况,将干形划分 3 个等级: 1 级通直,2 级有弯曲,3 级很弯曲。对 1983 年批 10 年生种源试验林调查表明各种源 2 级干形占 61. 92%(平均)、变幅 52. $18\% \sim 71.6\%$,差异不显著;1 级干形占 17. 98%,变幅 $3.28\% \sim 27.84\%$;3 级干形占 20. 10%,变幅 $8.35\% \sim 44.44\%$ 。1,3 级干形在产地间均存在显著差异,说明火炬松干形一定程度上虽受外界因子影响,也很大程度上是种源本身的遗传性所决定,并且在种源间存在差异。
- 2.1.3 冠幅、冠层厚与分支 1983 年批 10 年生时,平均冠幅 3.85 m (变幅 3.34~3.93 m),种源间差异显著。1984 年批 7 年生时平均冠幅 3.57 m (变幅 3.2~4.0 m);平均冠层厚度 2.6 m (变幅 2.1~3.0 m);第一活枝基径(分枝粗)平均 3.1 cm (变幅 2.8~3.4 cm),3 个性状的种源间差异不显著。

另外经观测分析,种源造林保存率平均 88.9%,变幅 79.0% \sim 99.0%,种源间有差异。 感病指数与松梢螟危害等级等抗性指标在种源间没有显著差异。

2.1.4 性状变 异与产地因子的关系 据上述分析可知,火炬松在生长、干形、造林保存率等性状因子存在地理变异。为探讨其变异规律,利用 1983 年批 10 年生种源试验林的树高、胸径、材积、1 级及 3 级干形比例、造林保存率、原产地的地理和气象因子进行典型相关分析。地理因子组包括经度、纬度;气象因子组包括年均温、1 月均温、年降水量、夏季降水和无霜期。表 4 列出了经 χ^2 检验显著的典型变量特征方程各系数及典型相关系数。

结果表明性状与地理因子两综合变量间呈显著相关的典型变量中,生物性状组以材积的 载荷最大,其次是树高。地理变量组以纬度的载荷最大,反映出纬度对生长这一主要性状变 异起主要作用。生物性状与气象因子的典型相关分析可知,生物性状组仍以生长量变异为 主,15象因子则以反映产地热量的因子为主,夏季降水和无霜期也有一定影响。rved. http://www.

表 4 1983 年批 10 年生种源林主要性状与原产地地理位置和气象因子的典型相关分析

Table 4 Canonical analysis of correlations between main growth characters of provenances tested in 1983 at the age of 10 and geographical sites and climatic factors

类别	典型变量特征方程系数										
主要	生物性	树高	胸径	材积	1级干形	3 级干形	保存率				
性状与	状组	-1 009 9	−0. 861 6	1. 721 5	- 0. 103 7	-0 971 3	0. 563 3	0.9105			
地理	地理变	经度	纬度								
因子	量组	0 474 1	1. 192 4								
主要	生物性	树高	胸径	材积	1 级干形	3 级干形	保存率				
性状	状组	-23792	-2. 263 6	4. 270 4	0. 463 7	0 295 7	0. 873 1	0.006.2			
与 气象	气象因	年均温	1月均温	年降水	夏季降水	无霜期		0. 896 3			
因子	子组	-7. 006 1	6. 557 4	- 0. 354 5	— 1. 510 1	1 139 8					

22 主要性状的遗传分析

2.2.1 性状间的遗传相关 1983 年批 10 年生种源试验林生长性状及干形的遗传相关显示 (表 5),各生长性状间存在着紧密的表型、遗传、环境相关关系。树高、胸径、材积 3 个性 状在遗传上关系紧密,且对环境变化反映一致。只要有良好的立地条件,林木的纵、横向生长能协调增长,表明育林措施优劣对林木生长至关重要。生长量与干形相关不紧密,表明两者是不同的遗传控制。在生产实践中选择生长、干形兼优的种源是可能的。这为制定相应的生产措施提供了理论依据。

表 5 1983 年批 10年生种源林主要性状遗传相关分析

Table 5	Genetic	correlation	anlysis on	main g	rowth	characters of	provenances	tested in	1983	at the	age of 10
---------	---------	-------------	------------	--------	-------	---------------	-------------	-----------	------	--------	-----------

性 状	类 别	胸 径	材 积	1 级干形	3级干形
	表型相关	0. 715 3	0.850 2	0. 124 6	- 0. 186 4
树高	遗传相关	0. 807 4	0.879 3	− 0. 123 2	- 0. 423 5
	环境相关	0. 636 8	0. 838 3	0. 378 2	0. 038 9
	表型相关		0. 971 1	0. 107 8	0. 033
胸径	遗传相关		0. 998 9	0. 091 9	- 0. 025 5
	环境相关		0. 929 7	0. 132 6	0. 117 6
	表型相关			0. 126 2	-0.038 3
材积	遗传相关			0. 043 1	- 0. 135 2
	环境相关			0. 239 8	0.086 1

- 2.2.2 不同林龄的生长相关 经分析,高生长自3年生起,各林龄间相关就呈显著或极显著水平:胸径生长自5年生起各林龄间呈稳定的紧密相关关系(表6)。
- 2.2.3 性状的遗传力 以1983年批种源试验林10年生的资料进行遗传力估算(表7)。从表中可以看出:环境方差分量明显大于种源方差分量,表型变异大于遗传变异,材积的变异为最大:树高、胸径、材积3个性状的遗传力分别为0.44、0.64和0.59。不同批次种源林

因参试材料、林龄和试验点条件的不同,所估算的遗传力也有差异。1982 年批 11 年生时的树高、胸径、材积遗传力分别为 0.497, 0.288 和 0.274; 1984 年批 7 年生时的 3 者遗传力分别为 0.419, 0.545 和 0.571。

表 6 1983年批火炬松历年生长相关分析

Table 6	Correlation and	vsis on annual	increments of	provenances te	ested in 1983
---------	-----------------	----------------	---------------	----------------	---------------

	3 年生	5 年生	6 年生	7年生	8年生	10 年生
2 年生	0. 722 9 * *	0. 563 5 * *	0 544 2 *	0 554 0 *	0 487 4 *	0 418 9
3 年生		0. 688 7 * *	0 552 5 *	0 603 3 * *	0 443 7 *	0 504 5 *
5 年生	0. 311 0		0 834 3 * *	0 852 9 * *	0 770 8 * *	0 749 4 * *
6年生	0. 356 6	0. 905 1 * *		0 935 1 * *	0 869 8 * *	0 794 9 * *
7年生	0. 309 6	0. 900 5 * *	0 951 2 * *		0 905 9 * *	0 883 7 * *
8年生	0. 039 8	0. 777 2 * *	0 830 5 * *	0 875 9 * *		0 897 2 * *
10 年生	-0.1320	0. 699 0 * *	0 717 3 * *	0 7763 * *	0 952 7 * *	

说明: 表中右上角为树高相关系数, 左下角为胸径相关系数

表 7 1983 年批种源 10 年生林分生长性状遗传参数估算

Table 7 Calculation of genetic parameters of provenances tested in 1983 at the age of 10

				方差分量 /%	,	遗传参数/%			变	幅
性 状		种源平均	种源	区组	机误	遗传变异	环境变异 系 数	遗传力	极大值	极小值
树高/m	1	8 10	15. 19	8. 77	76 04	2 75	7.06	44. 44	8. 62	7. 62
胸径/ a	m	14. 64	20. 84	32. 33	46 83	3 89	8 53	64. 03	16. 14	13 37
材积/m	1 ³	0 071 7	18. 74	29. 37	51 89	9 38	21. 67	59. 02	0. 087 5	0.056 8

23 优良种源的选择

由于不同批次的种源试验的参试材料、林龄和分析性状不同,种源选择方法有所不同。1982年批种源试验林采用综合权重分析法评选优良种源,即将树高、胸径、材积 3 个性状数据标准化后,分别以权重 3, 2, 5 计算综合得分,再按得分排序进行选择。1983年和1984年批次种源试验林则以指数选择法进行选择。表 8 是选出的优良种源与对照的比较。1982年批所选出的 3 个优良种源分别为 PT05,PT04和 PT09,其材积大于林分平均值的 9. 16 %~19. 27 %;1983年批入选的是路易斯安娜的 RL28和南卡罗来那的 RL09和佛罗里达的 RL16,与林分平均及马尾松对照比较,材积分别大 15. 85 %~21. 95 %和 539. 81 %~572. 77 %;1984年批入选的是佛罗里达的 L17,佐治亚的 L06 和 L13 种源,其材积分别大于林分平均与湿地松对照林 24. 31 %~49. 44 %和 51. 94 %~82. 66 %。3 个批次入选的优良种源 10 年生时材积的遗传增益分别达 3. 05 %~20. 39 %。

表 8	选择出的火炬松优良种源均衡	估比较
4Y ()	- 176 1エーコロコ ハ AP 4ハコルコンパヤルホメン	1 1 1 1 1 1 2 2

		with those of the contrast

批次	序号	种源号	树高	大于均值	胸径	大于均值	材积	大于均值
			/ m	1%	/ cm	1%	$/ m^3$	1%
1982 年批	1	PT05	9. 92	4 4	17. 23	9. 5	0 119 24	19 27
	2	PT04	10.08	5 1	15 96	0. 5	0 107 433	5. 77
	3	PT09	9. 61	1 1	16 05	1. 1	0 108 829	9. 16
遗传增益		1. 94%		0 94%		3. 05%		
1983 年批	1	RL28	8. 45	4 3	16 14	10. 2	0 087 501	21 95
				(77. 91)		(99.3)		(572 77)
	2	RL09	8. 62	5 4	15 42	5. 3	0 084 015	17. 09
	2			(81 5)		(89.4)		(545 97)
	3	RL16	8. 45	4 3	15 49	5. 7	0 083 084	5. 85
				(77. 9)		(90.3)		(539 87)
遗传增益		2. 23%	2. 23% (20. 61%) 4 52% (32 92%)		(32 92%)	10. 79% (59 11%)		
1984 年批	1	L13	5 22	12 9	11.71	17. 4	0.000.005	49 44
			5. 33	(11 5)	11 71	(27. 67)	0 028 895	(82 66)
	2	L06	5. 16	9 3	11 19	12. 2	0 025 792	33 39
				(7.9)		(21.9)		(63 04)
	3	L17	4. 91	4 0	10 98	10. 1	0 024 036	24 31
				(27)		(19.6)		(51 94)
遗传增益		3. 67%	3. 67% (3. 14%)		7. 23% (11 55%)		20. 39% (30 73%)	

说明:表中 1983 年批括号内数据是与马尾松对照,1984 年批括号内数据是与湿地松对照

3 小结

长乐林场 1982~1984 年 3 个批次共 40 个种源的试验表明,火炬松不同种源间存在着丰富的性状变异,尤以树高、胸径和材积生长的变异为主要,干形及反映适应性的造林保存率也存在一定的种源差异。产地的地理纬度及热量状况是引起种源地理变异的主要原因。种源生长量性状具有中等程度遗传力。这些结果表明,火炬松的种源选择有着一定的遗传基础和潜力。

遗传相关分析结果表明,火炬松生长量性状与干形受不同的遗传控制,遗传相关关系是不明显的。在生产与育种工作中,在注意生长量性状选择的同时,不可忽视林分群体干形的 改良。

林分生长早晚期相关显示,3年生火炬松树高生长与以后各年龄期的相关是紧密的。5年生胸径生长与以后各年龄期的相关紧密,表明在5年生时进行种源的早期选择,已有一定的可靠性。这对缩短音种周期具有很大的意义。

经综合评定,从3个批次试验林中选择出9个优良种源,大都来自美国东南沿海,适宜长乐林场地区及相似条件的浙北丘陵山地生长,可以推广应用。10年生时其遗传增益在3.05%~20.39%,增产潜力较大。

本试验是全国火炬松种源研究项目中的一部分,由于试验分析材料仅来自长乐林场,其结果也只能说明参试火炬松在长乐林场及相似地区的情况。House. All rights reserved. http://www.

致谢 本文由董耀卿、傅宏元执笔整理。本研究得到中国林业科学研究院潘志刚研究员,南京林业大学王章荣教授,浙江林学院刘洪谔教授、范义荣副教授,中国林业科学研究院亚热带林业研究所刘昭息研究员、何玉友工程师的帮助支持;长乐林场李锦清高级工程师自始至终参与试验工作。在此一并表示感谢。

参考文献

- 1 潘志刚主编. 湿地松火炬松种源试验研究. 北京. 北京科学技术出版社, 1992. 5~20
- 2 马育华. 植物育种的数量遗传学基础. 南京: 江苏科学技术出版社, 1982. 334~346
- 3 王明庥主编. 林木育种学概论. 北京: 中国林业出版社, 1989. 191~285
- 4 唐守正. 多元统计分析方法. 北京: 中国林业出版社, 1986. 90~101
- 5 刘来福主编. 作物数量遗传. 北京: 农业出版社, 1984. 50~201
- 6 张全福. 农业试验统计模型和 BASIC 程序. 杭州. 浙江科学技术出版社, 1985. 60~150

Dong Yaoqing (Changle Forest Farm, Yuhang 311123, Zhejiang, PRC), Yu Jianxin, Zhang Jianzhong, Cao Jianshi, and Fu Hongyuan. **Variation and selection of loblolly-pine provenaces on Changle Forest Farm**. *Journal of Zhejiang Forestry College*, 1998, **15** (4): 347 ~ 354

Abstract: There tests were conducted on 40 lob lolly-pine provenances in 1982, 1983 and 1984 respectively. The results demonstrated an obvious variation in tree height, DBH, volume, stem form-factors and survival rate of plantation among different provenances, which resulted mainly from the differences in latitudes and caloricity. Increment of provenances had a heritability of medium degree. A close relation was found existing between 3 characters of increment, but not between increment characters and stem form-factors. Increment in height and DBH of 3 to 5-year-old trees was correlated to those aged over 3 ~ 5, which indicated the selection of those 5 years old might be more reliable. Nine fine provenances were selected, with genetic gain ranging between 3.05 % and 20.39 %.

Key words: loblolly-pine (*Pinus taeda*); provenance tests; variation (genetics); selection; heritable parameters