[1] DAIMS H, WAGNER M. Nitrospira [J]. Trends Microbiol, 2018, 26(5): 462 − 463.
[2] GEIGENBERGER P. Response of plant metabolism to too little oxygen [J]. Curr Opin Plant Biol, 2003, 6(3): 247 − 256.
[3] DREW M C. Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia [J]. Ann Rev Plant Physiol Plant Mol Biol, 1997, 48(1): 223 − 250.
[4] BAILEY-SERRES J, FUKAO T. Plant responses to hypoxia–is survival a balancing act? [J]. Trends Plant Sci, 2004, 9(9): 449 − 456.
[5] ANNALISA P, SOFIA C, ANTONELLA L, et al. ROS production and scavenging under anoxia and re-oxygenation in Aarabidopsis cells: a balance between redox signaling and impairment [J]. Front Plant Sci, 2016, 7: 1803.
[6] MUNIR R, KONNERUP D, KHAN H A, et al. Sensitivity of chickpea and faba bean to root-zone hypoxia, elevated ethylene and carbon dioxide: root responses to low O2, ethylene, or high CO2 [J]. Plant Cell Environ, 2019, 42(1): 85 − 97.
[7] HATTORI Y, NAGAI K, FURUKAWA S, et al. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water [J]. Nature, 2009, 460(7258): 1026 − 1030.
[8] YAMAUCHI T, YOSHIOKA M, FUKAZAWA A, et al. An NADPH oxidase RBOH functions in rice roots during lysigenous aerenchyma formation under oxygen-deficient conditions [J]. Plant Cell, 2017, 29(4): 775 − 790.
[9] BAILEY-SERRES J, FUKAO T, GIBBS D J, et al. Making sense of low oxygen sensing [J]. Trends Plant Sci, 2012, 17(3): 129 − 138.
[10] YAMAUCHI T, SHIONO K, NAGANO M, et al. Ethylene biosynthesis is promoted by very-long-chain fatty acids during lysigenous aerenchyma formation in rice roots [J]. Plant Physiol, 2015, 169(4): 180 − 193.
[11] BAILEY-SERRES J, VOESENSK L A C J. Flooding stress: acclimations and genetic diversity [J]. Ann Rev Plant Biol, 2008, 59(1): 313 − 339.
[12] SHIONO K, OGAWA S, YAMAZAKI S, et al. Contrasting dynamics of radial O2-loss barrier induction and aerenchyma formation in rice roots of two lengths [J]. Ann Bot, 2011, 107(1): 89 − 99.
[13] HE C, FINLAYSON S A, DREW M C, et al. Ethylene biosynthesis during aerenchyma formation in roots of maize subjected to mechanical impedance and hypoxia [J]. Plant Physiol, 1996, 112(4): 1679 − 1685.
[14] RAJHI I, YAMAUCHI T, TAKAHASHI H, et al. Identification of genes expressed in maize root cortical cells during lysigenous aerenchyma formation using laser microdissection and microarray analyses [J]. New Phytol, 2011, 190(2): 351 − 368.
[15] THOMSON C J, ARMSTRONG W, WATERS I, et al. Aerenchyma formation and associated oxygen movement in seminal and nodal roots of wheat [J]. Plant Cell Environ, 2010, 13(4): 395 − 403.
[16] STEFFENS B, GESKE T, SAUTER M. Aerenchyma formation in the rice stem and its promotion by H2O2 [J]. New Phytol, 2011, 190(2): 369 − 378.
[17] EVANS D E. Aerenchyma formation [J]. New Phytol, 2003, 161(1): 35 − 49.
[18] ARMSTRONG J, ARMSTRONG W. Phragmites australis: a preliminary study of soil-oxidizing sites and internal gas transport pathways [J]. New Phytol, 1988, 108(4): 373 − 382.
[19] SURALTA R R, YAMAUCHI A. Root growth, aerenchyma development, and oxygen transport in rice genotypes subjected to drought and waterlogging [J]. Environ Exp Bot, 2008, 64(1): 75 − 82.
[20] 陈龙飞. 笋用雷竹高产栽培[J]. 安徽林业科技, 2000(5): 15.

CHEN Longfei. High-yield cultivation of bamboo shoots [J]. J Anhui For Sci Technol, 2000(5): 15.
[21] 周国模, 金爱武, 何钧潮, 等. 覆盖保护地栽培措施对雷竹笋用林丰产性能的影响[J]. 中南林学院学报, 1999, 19(2): 52 − 54.

ZHOU Guomo, JIN Aiwu, HE Junchao, et al. The influence of cultivation techniques used in covered protected plots on the high-yield property of Lei bamboo plantation for edible shoots [J]. J Cent South For Univ, 1999, 19(2): 52 − 54.
[22] 董林根, 吴伟根, 郑钢, 等. 经营干扰对雷竹叶面积指数的影响[J]. 经济林研究, 1999, 17(2): 14 − 16.

DONG Lingeng, WU Weigeng, ZHENG Gang, et al. Decline in bamboo leaf area index as affected by management disturbance [J]. Econ For Res, 1999, 17(2): 14 − 16.
[23] XU Mengjie, ZHUANG Shunyao, GUI Renyi. Soil hypoxia induced by an organic-material mulching technique stimulates the bamboo rhizome up-floating of Phyllostachys praecox[J]. Sci Rep, 2017, 7(1): 14353. doi: 10.1038/s41598-017-14798-8.
[24] NILSSON R L K, MAGNESCHI L, LORETI E, et al. Transcript profiling of the anoxic rice coleoptile [J]. Plant Physiol, 2007, 144(1): 218 − 231.
[25] 张岚清, 沈德魁. 含氧气氛下的稻杆低温烘焙研究[J]. 北京化工大学学报(自然科学版), 2017, 44(5): 27 − 32.

ZHANG Lanqing, SHEN Dekui. Oxidative torrefaction of rice straw under different oxygen concentrations [J]. J Beijing Univ Chem Technol Nat Sci, 2017, 44(5): 27 − 32.
[26] YOSHINAO M, YUSUKE K, MASAYA K, et al. Diel O2 dynamics in partially and completely submerged deepwater rice: leaf gas films enhance internodal O2 status, influence gene expression and accelerate stem elongation for ‘Snorkelling’ during submergence [J]. Plant Cell Physiol, 2019, 60(5): 973 − 985.
[27] JIANG Yiwei, HUANG Bingru. Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool-season grasses [J]. J Exp Bot, 2001, 52(355): 341 − 349.
[28] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2006.
[29] YOSHIYUKI N, KOZI A. Spinach chloroplasts scavenge hydrogen peroxide on illumination [J]. Plant Cell Physiol, 1980, 21(7): 1295 − 1307.
[30] 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006.
[31] 袁晓华, 杨中汉. 植物生理生化实验[M]. 北京: 高等教育出版社, 1983.
[32] BJÖRKMAN O. The effect of oxygen concentration on photosynthesis in higher plants [J]. Physiol Plant, 2006, 19(3): 618 − 633.
[33] CHÉRIF M, TIRILLY Y, BELANGER R R. Effect of oxygen concentration on plant growth, lipidperoxidation, and receptivity of tomato roots to pythium F under hydroponic conditions [J]. Eur J Plant Pathol, 1997, 103(3): 255 − 264.
[34] QUEBEDEAUX B, HARDY R W F. Reproductive growth and dry matter production of Glycine max (L.) Merr in response to oxygen concentration [J]. Plant Physiol, 1975, 55(1): 102 − 107.
[35] 郑小兰, 侯亚兵, 王瑞娇, 等. 根际氧浓度对番茄幼苗生长发育的影响[J]. 华北农学报, 2017, 32(4): 208 − 214.

ZHENG Xiaolan, HOU Yabing, WANG Ruijiao, et al. Effects of oxygen concentration in rhizosphere on the growth of tomato seedlings [J]. Acta Agric Boreal-Sin, 2017, 32(4): 208 − 214.
[36] ALMEIDA A M, VRIEZEN W H, van der STRAETEN D. Molecular and physiological mechanisms of flooding avoidance and tolerance in rice [J]. Russ J Plant Physiol, 2003, 50(6): 743 − 751.
[37] STOIMENOVA M, IGAMBERDIEV A U, GUPTA K J, et al. Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria [J]. Planta, 2007, 226(2): 465 − 474.
[38] VISSER E J W, VOESENEK L A C J, VARTAPETIAN B B, et al. Flooding and Plant Growth[M]. New York: Academic Press, 1984.
[39] 郭益昌, 庄舜尧, 胡昱彦, 等. 埋管通气对雷竹林土壤氧气体积分数的影响[J]. 浙江农林大学学报, 2020, 37(1): 69 − 75.

GUO Yichang, ZHUANG Shunyao, HU Yuyan, et al. Soil oxygen content of Phyllostachys violascens with pipe-buried aeration [J]. J Zhejiang A&F Univ, 2020, 37(1): 69 − 75.
[40] ARMSTRONG W D. Aeration in higher plants [J]. Adv Bot Res, 1980, 7: 225 − 332.
[41] 焦彦生, 郭世荣, 李娟, 等. 钙对根际低氧胁迫下黄瓜幼苗活性氧代谢的影响[J]. 西北植物学报, 2006, 26(10): 2056 − 2062.

JIAO Yansheng, GUO Shirong, LI Juan, et al. Effect of low rhizospere oxygen stress on reactive oxygen species metabolism in cucumber seedlings [J]. Acta Bot Boreal-Occident Sin, 2006, 26(10): 2056 − 2062.
[42] LI Pengxia, ZHANG Xuan, HU Huali, et al. High carbon dioxide and low oxygen storage effects on reactive oxygen species metabolism in Pleurotus eryngii [J]. Postharvest Biol Technol, 2013, 85: 141 − 146.
[43] de GARA L. Class Ⅲ peroxidases and ascorbate metabolism in plants [J]. Phytochem Rev, 2004, 3(1): 195 − 205.
[44] ZHAN Gaomiao, LI Rongjun, HU Zhiyong, et al. Cosuppression of RBCS3B in Arabidopsis leads to severe photoinhibition caused by ROS accumulation [J]. Plant Cell Rep, 2014, 33(7): 1091 − 1108.
[45] 吕文静. H2S介导镉调控ROS平衡抑制不结球白菜根生长机理研究[D]. 南京: 南京农业大学, 2016.

LÜ Wenjing. Mechanism of H2S Mediated Cadmium Regulation ROS Inhibites Non-heading Chinese Cabbage Root Growth[D]. Nanjing: Nanjing Agricultural University, 2016.
[46] GIBBS D J, LEE S C, ISA N M, et al. Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants [J]. Nature, 2011, 479(7373): 415 − 418.
[47] YAMAUCHI T, RAJHI I, NAKAZONO M. Lysigenous aerenchyma formation in maize root is confined to cortical cells by regulation of genes related to generation and scavenging of reactive oxygen species [J]. Plant Signaling Behav, 2011, 6(5): 759 − 761.
[48] SOSIŃSKA A, MALESZEWSKI S. Effect of high oxygen concentration on photosynthesis in rape plants pretreated in low temperature [J]. Zeitschriftfür Pflanzenphysiologie, 1982, 108(5): 397 − 399.
[49] ZABALZA A, van DONGEN J T, FROEHLICH A, et al. Regulation of respiration and fermentation to control the plant internal oxygen concentration [J]. Plant Physiol, 2009, 149(2): 1087 − 1098.
[50] AYI Q, BO Zeng, LIU Jianhui, et al. Oxygen absorption by adventitious roots promotes the survival of completely submerged terrestrial plants [J]. Ann Bot, 2016, 118(4): 675 − 683.