[1] XIE Zhouli, NOLAN T M, JIANG Hao, et al. AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in Arabidopsis[J/OL]. Front Plant Sci, 2019, 10: 228[2022-03-20]. doi: 10.3389/fpls.2019.00228.
[2] GU Cao GUO Zhihua, HAO Pingping et al. Multiple regulatory roles of AP2/ERF transcription factor in angiosperm [J]. Bot Stud, 2017, 58(1): 1 − 8.
[3] XU Wei, LI Fei, LING Lizhen, et al. Genome-wide survey and expression profiles of the AP2/ERF family in castor bean (Ricinus communis L. ) [J]. BMC Genomics, 2013, 14(1): 785 − 800.
[4] OKAMURO J K, CASTER B, VILLARROEL R, et al. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis [J]. Proc Natl Acad Sci USA, 1997, 94(13): 7076 − 7081.
[5] NAKANO T, SUZUKI K, FUJIMURA T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice [J]. Plant Physiol, 2006, 140(2): 411 − 432.
[6] EL O S, SCHNELL J, ABDEEN A, et al. Control of somatic embryogenesis and embryo development by AP2 transcription factors [J]. Plant Mol Biol, 2010, 74(4/5): 313 − 326.
[7] LICAUSI F, GIORGI F M, ZENONI S, et al. Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera [J]. BMC Genomics, 2010, 11: 719 − 734.
[8] LI Hui, WANG Yu, WU Mei, et al. Genome-wide identification of AP2/ERF transcription factors in cauliflower and expression profiling of the ERF family under salt and drought stresses[J/OL]. Front Plant Sci, 2017, 8: 946[2022-03-20]. doi:10.3389/fpls.2017.00946.
[9] KARANJA B K, XU Liang, WANG Yan, et al. Genome-wide characterization of the AP2/ERF gene family in radish (Raphanus sativus L. ): unveiling evolution and patterns in response to abiotic stresses[J/OL]. Gene, 2019, 718: 144048[2022-03-20]. doi: 10.1016/j.gene.2019.144048.
[10] XING Haitao, JIANG Yusong, ZOU Yong, et al. Genome-wide investigation of the AP2/ERF gene family in ginger: evolution and expression profiling during development and abiotic stresses [J]. BMC Plant Biol, 2021, 21(1): 1 − 21.
[11] CUI M, HAIDER M S, CHAI P, et al. Genome-wide identification and expression analysis of AP2/ERF transcription factor related to drought stress in cultivated peanut (Arachis hypogaea L. ) [J/OL]. Front Genet, 2021, 12: 750761[2022-03-20]. doi:10.3389/fgene.2021.750761.
[12] SHARONI A M, NURUZZAMAN M, SATOH K, et al. Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice [J]. Plant Cell Physiol, 2011, 52(2): 344 − 360.
[13] LI Peiting, CHAI Zhe, LIN Pingping, et al. Genome-wide identification and expression analysis of AP2/ERF transcription factors in sugarcane (Saccharum spontaneum L. ) [J]. BMC Genomics, 2020, 21(1): 685. doi:10.1186/s12864-020-07076-x.
[14] ZHANG Jing, LIAO Jiayao, LING Qiqi, et al. Genome-wide identification and expression profiling analysis of maize AP2/ERF superfamily genes reveal essential roles in abiotic stress tolerance [J]. BMC Genomics, 2022, 23(1): 1 − 22.
[15] GUO Baojian, WEI Yafeng, XU Ruibin, et al. Genome-wide analysis of APETALA2/ethylene-responsive factor (AP2/ERF) gene family in barley (Hordeum vulgare L. ) [J/OL]. PLoS One, 2016, 11(9): e161322[2022-03-20]. doi: 10.1371/journal.pone.0161322.
[16] JOFUKU K D, den BOER B G, van MONTAGU M, et al. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2 [J]. Plant Cell, 1994, 6(9): 1211 − 1225.
[17] AUKERMAN M J, SAKAI H. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes [J]. Plant Cell, 2003, 15(11): 2730 − 2741.
[18] JOFUKU K D, OMIDYAR P K, GEE Z, et al. Control of seed mass and seed yield by the floral homeotic gene APETALA2 [J]. Proc Natl Acad Sci PNAS, 2005, 102(8): 3117 − 3122.
[19] FLOREZ S L, ERWIN R L, MAXIMOVA S N, et al. Enhanced somatic embryogenesis in Theobroma cacao using the homologous BABY BOOM transcription factor[J/OL]. BMC Plant Biol, 2015, 15: 121[2022-03-22]. doi: 10.1186/s12870-015-0479-04.
[20] SRINIVASAN C, LIU Zhongrang, HEIDMANN I, et al. Heterologous expression of the BABY BOOM AP2/ERF transcription factor enhances the regeneration capacity of tobacco (Nicotiana tabacum L. ) [J]. Planta, 2007, 225(2): 341 − 351.
[21] BOUTILIER K, OFFRINGA R, SHARMA C V K, et al. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth [J]. Plant Cell, 2002, 14(8): 1737 − 1749.
[22] FENG Kai, HOU Xilin, XING Guoming, et al. Advances in AP2/ERF super-family transcription factors in plant [J]. Crit Rev Biotechnol, 2020, 40(6): 750 − 776.
[23] DUBOUZET J G, SAKUMA Y, ITO Y, et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression [J]. Plant J, 2003, 33(4): 751 − 763.
[24] VOGEL M O, MOORE M, KÖNIG K, et al. Fast retrograde signaling in response to high light involves metabolite export, MITOGEN-ACTIVATED PROTEIN KINASE6, and AP2/ERF transcription factors in Arabidopsis [J]. Plant Cell, 2014, 26(3): 1151 − 1165.
[25] FU Minjie, KANG H K, SON S H, et al. A subset of Arabidopsis RAV transcription factors modulates drought and salt stress responses independent of ABA [J]. Plant Cell Physiol, 2014, 55(11): 1892 − 1904.
[26] LI C W, SU R C, CHENG C P, et al. Tomato RAV transcription factor is a pivotal modulator involved in the AP2/EREBP-mediated defense pathway [J]. Plant Physiol, 2011, 156(1): 213 − 227.
[27] MARCHLER-BAUER A, DERBYSHIRE M K, GONZALES N R, et al. CDD: NCBI’ s conserved domain database [J]. Nucleic Acids Res, 2015, 43(D1): 222 − 226.
[28] GASTEIGER E, HOOGLAND C, GATTIKER A, et al. The Proteomics Protocols Handbook [M]. Clifton: Humana Pr Inc, 2005: 571 − 607.
[29] NEWMAN L, DUFFUS A, LEE C. Using the free program MEGA to build phylogenetic trees from molecular data [J]. Am Biol Teach, 2016, 78(7): 608 − 612.
[30] HE Zilong, ZHANG Huangkai, GAO Shenghan, et al. Evolview v2: an online visualization and management tool for customized and annotated phylogenetic trees[J/OL]. Nucl Acids Res, 2016, 44(W1): W236-W241[2022-03-20]. doi: 10.1093/nar/gkw370.
[31] CHEN Chengjie, CHEN Hao, ZHANG Yi, et al. TBtools-an integrative toolkit developed for interactive analyses of big biological data [J]. Mol Plant, 2020, 13(8): 1194 − 1202.
[32] LESCOT M, DÉHAIS P, THIJS G, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences [J]. Nucleic Acids Res, 2002, 30(1): 325 − 327.
[33] SZKLARCZYK D, GABLE A L, NASTOU K C, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets [J]. Nucleic Acids Res, 2021, 49(1): 605 − 612.
[34] SHANNON P, MARKIEL A, OZIER O, et al. Cytoscape: asoftware environment for integrated models of biomolecular interaction networks [J]. Genome Res, 2003, 13(11): 2498 − 2504.
[35] 赵金玲, 姚文静, 王升级, 等. 杨树AP2/ERF转录因子家族生物信息学分析[J]. 东北林业大学学报, 2015, 43(10): 21 − 29.

ZHAO Jinling, YAO Wenjing, WANG Shengji, et al. AP2/ERF gene family in Populus trichocarpa by bioinformatics [J]. J Northeast For Univ, 2015, 43(10): 21 − 29.
[36] SAKUMA Y, LIU Qiang, DUBOUZET J G, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression [J]. Biochem Biophys Res Commun, 2002, 290(3): 998 − 1009.
[37] YANG B, YAO X, ZENG Y, et al. Genome-wide identification, characterization, and expression profiling of AP2/ERF superfamily genes under different development and abiotic stress conditions in pecan (Carya illinoinensis)[J/OL]. Int J Mol Sci, 2022, 23(6)[2022-03-20]. doi:10.3390/ijms23062920.
[38] LI Mengyao, LIU Jiexia, HAO Jiannan, et al. Genomic identification of AP2/ERF transcription factors and functional characterization of two cold resistance-related AP2/ERF genes in celery (Apium graveolens L. ) [J]. Planta, 2019, 250(4): 1265 − 1280.
[39] SAKUMA Y, MARUYAMA K, QIN Feng, et al. Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression [J]. Proc Natl Acad Sci U S A, 2006, 103(49): 18822 − 18827.