[1] |
LEE H T, SOON L L, KEVIN K N, et al. DNA extraction from dry wood of Neobalanocarpus heimii (Diperocarpaceae)for forensic DNA profiling and timeber tracking [J]. Wood Sci Technol, 2012, 46(5): 813 − 815. |
[2] |
陈利顶, 李秀珍, 傅伯杰, 等. 中国景观生态学发展历程与未来研究重点[J]. 生态学报, 2014, 34(12): 3129 − 3141.
CHEN Liding, LI Xiuzhen, FU Bojie, et al. Development history and future research priorities of landscape ecology in China [J]. J Ecol, 2014, 34(12): 3129 − 3141. |
[3] |
JIAO Lichao, YIN Yafang, XIAO Fuming, et al. Comparative analysis of two DNA extraction protocols from fresh and dried wood of Cunninghamia lanceolata(Taxodiaceae) [J]. J Iawa, 2012, 4(33): 441 − 456. |
[4] |
王宪, 沈华杰, 于清琳, 等. 基于IAWA的3种简易木材识别方法探究[J]. 西南林业大学学报, 2019, 39(6): 167 − 172.
WANG Xian, SHEN Huajie, YU Qinglin, et al. Research on 3 simple timber identification methods based on IAWA [J]. J Southwest For Univ, 2019, 39(6): 167 − 172. |
[5] |
MUECHER S, KLIJN J A, WASCHER D, et al. A new European landscape clasification(LANMAP): a transparent, flexible and user-oriented methodology to distinguish landscapes [J]. Ecol Indic, 2010, 10(1): 87 − 103. |
[6] |
王学顺, 黄安民, 孙一丹, 等. 基于BP神经网络的木材近红外光谱树种识别[J]. 东北林业大学学报, 2015, 43(12): 82 − 85, 89.
WANG Xueshun, HUANG Anmin, SUN Yidan, et al. Back propagation artificial neural network combine with near infrared spectroscopy for timber recognition [J]. J Northeast For Univ, 2015, 43(12): 82 − 85, 89. |
[7] |
谭念, 孙一丹, 王学顺, 等. 基于主成分分析和支持向量机的木材近红外光谱树种识别研究[J]. 光谱学与光谱分析, 2017, 37(11): 3370 − 3374.
TAN Nian, SUN Yidan, WANG Xueshun, et al. Research on near infrared spectrum with principal component analysis and support vector machine for timber identification [J]. Spectrosc Spectral Anal, 2017, 37(11): 3370 − 3374. |
[8] |
陈远哲, 王巧华, 高升, 等. 基于近红外光谱的淡水鱼贮藏期质构品质的无损检测模型[J]. 激光与光电子学进展, 2021, 58(12): 491 − 499.
CHEN Yuanzhe, WANG Qiaohua, GAO Sheng, et al. Nondestructive testing model for textural quality of freshwater fish instorage usingnear-infrared spectroscopy [J]. Laser Optoelectron Prog, 2021, 58(12): 491 − 499. |
[9] |
郭文川, 朱德宽, 张乾, 等. 基于近红外光谱的掺伪油茶籽油检测[J]. 农业机械学报, 2020, 51(9): 350 − 357.
GUO Wenchuan, ZHU Dekuan, ZHANG Qian, et al. Detection on adulterated oil-tea camellia seed oil based on near-infrared spectroscopy [J]. J Agric Mach, 2020, 51(9): 350 − 357. |
[10] |
潘拓, 马鑫, 谢安, 等. 利用主成分分析法优化BP神经网络模型在砂砾岩岩性识别中的应用[J]. 新疆地质, 2020, 38(3): 417 − 420.
PAN Tuo, MA Xin, XIE An, et al. Application of the optimized BP neural network model based on principal component analysis in lithology identification of glutenite reservoirs [J]. Xinjiang Geol, 2020, 38(3): 417 − 420. |
[11] |
ZHU Hongyan, CHU Bingquan, FAN Yangyang, et al. Hyperspectral imaging for predicting the internal quality of kiwifruits based on variable selection algorithms and chemometric models [J]. Sci Rep, 2017, 7(1): 1 − 13. |
[12] |
ARAÚJO M C U, SALDANHA T C B, GALVÃO R K H, et al. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis [J]. Chemometrics Intell Lab Syst, 2001, 57(2): 65 − 73. |
[13] |
董蒙, 栾希亭, 吴宝元, 等. 基于自适应遗传算法的电液伺服系统控制[J]. 机床与液压, 2019, 47(14): 78 − 83.
DONG Meng, LUAN Xiting, WU Baoyuan, et al. Control of electro-hydraulic servo system control based on adaptive genetic algorithm [J]. Mach Tools Hydraul, 2019, 47(14): 78 − 83. |
[14] |
冯国红, 朱玉杰, 徐华东, 等. 应用遗传算法-主成分分析-反向传播神经网络的近红外光谱识别树种效果[J]. 东北林业大学学报, 2020, 48(6): 56 − 60.
FENG Guohong, ZHU Yujie, XU Huadong, et al. Using near infrared spectrum to identify tree species by GA-PCA-BP neural network [J]. J Northeast For Univ, 2020, 48(6): 56 − 60. |
[15] |
许锋, 付丹丹, 王彬, 等. 基于MCCV-CARS-RF建立红提糖度和酸度的可见-近红外光谱无损检测方法[J]. 食品科学, 2018, 39(8): 149 − 154.
XU Feng, FU Dandan, WANG Bin, et al. Nondestructive detection of sugar content and acidity in red globe table grapes using visible near infrared spectroscopy based on Monte-Carlo Cross Validation-Competitive Adaptive Reweighted Sampling-Random Forest (MCCV-CARS-RF) [J]. Food Sci, 2018, 39(8): 149 − 154. |
[16] |
ROMERO-TORRES S, PÉREZ-RAMOS J D, MORRIS K R. Raman spectroscopic measurement of tablet-to-tablet coating variability [J]. J Pharm Biomed Anal, 2005, 38(2): 270 − 274. |
[17] |
于慧伶, 门洪生, 梁浩, 等. SA-PBT-SVM的实木表面缺陷近红外光谱识别[J]. 光谱学与光谱分析, 2018, 38(6): 1724 − 1728.
YU Huiling, MEN Hongsheng, LIANG Hao, et al. Near, infrared spectroscopy identification method of wood surface defects based on SA-PBT-SVM [J]. Spectrosc Spectral Anal, 2018, 38(6): 1724 − 1728. |
[18] |
殷勇, 王光辉. 连续投影算法融合信息熵选择霉变玉米高光谱特征波长[J]. 核农学报, 2020, 34(2): 356 − 362.
YIN Yong, WANG Guanghui. Hyperspectral characteristic wavelength selection method for moldy maize based on continuous projection algorithm fusion information entropy [J]. J Nucl Agric Sci, 2020, 34(2): 356 − 362. |
[19] |
朱淑鑫, 顾兴健, 杨宸, 等. K均值算法结合连续投影算法应用于土壤速效钾含量的高光谱分析[J]. 江苏农业学报, 2020, 36(2): 358 − 365.
ZHU Shuxin, GU Xingjian, YANG Chen, et al. K-means algorithm combined with successive projection algorithm for hyperspectral analysis of soil available potassium content [J]. J Jiangsu Agric Sci, 2020, 36(2): 358 − 365. |
[20] |
陈伟, 李创, 唐荣年. 应用间隔随机蛙结合连续投影算法检测橡胶树叶片氮含量[J]. 河南科技大学学报, 2019, 40(5): 51 − 56.
CHEN Wei, LI Chuang, TANG Rongnian. Application of interval randomfrog combined with successive projections algorithm to detecting nitrogen content in rubber tree leaves [J]. J Henan Univ Sci Technol Nat Sci, 2019, 40(5): 51 − 56. |
[21] |
熊智新, 房桂干, 梁龙, 等. 近红外光谱结合连续投影算法检测综纤维素含量[J]. 中国造纸学报, 2019, 34(4): 46 − 51.
XIONG Zhixin, FANG Guigan, LIANG Long, et al. Full cellulose content in composite optical fibrous in combination with continuous projection algorithm [J]. Transac China Pulp Paper, 2019, 34(4): 46 − 51. |
[22] |
明曼曼, 陈芳, 孙恺琦, 等. 基于集群算法优化BP神经网络的NIRS树种识别研究[J]. 西部林业科学, 2020, 49(5): 124 − 128.
MING Manman, CHEN Fang, SUN Kaiqi, et al. NIRS tree species identification based on cluster algorithm optimized BP neural network [J]. J West China For Sci, 2020, 49(5): 124 − 128. |
[23] |
汪紫阳, 尹世逵, 李耀翔, 等. 基于可见/近红外光谱识别东北地区常见木材[J]. 浙江农林大学学报, 2019, 36(1): 162 − 169.
WANG Ziyang, YIN Shikui, LI Yaoxiang, et al. Identification of common wood species in northeast China using Vis/NIR spectroscopy [J]. J Zhejiang A&F Univ, 2019, 36(1): 162 − 169. |