[1] DIETZE M C, SALA A, CARBONE M S, et al. Nonstructural carbon in woody plants [J]. Annu Rev Plant Biol, 2014, 65(1): 667 − 687.
[2] STITT M, ZEEMAN S C. Starch turnover: pathways, regulation and role in growth [J]. Curr Opin Plant Biol, 2012, 15(3): 282 − 292.
[3] PANTIN F, SIMONNEAU T, ROLLAND G, et al. Control of leaf expansion: a developmental switch from metabolics to hydraulics [J]. Plant Physiol, 2011, 156(2): 803 − 815.
[4] GRAF A, SMITH A M. Starch and the clock: the dark side of plant productivity [J]. Trends Plant Sci, 2011, 16(3): 169 − 175.
[5] GIBON Y, BLÄSING O E, PALACIOS-ROJAS N, et al. Adjustment of diurnal starch turnover to short days: depletion of sugar during the night leads to a temporary inhibition of carbohydrate utilization, accumulation of sugars and post-translational activation of ADP-glucose pyrophosphorylase in the following light period [J]. Plant J, 2004, 39(6): 847 − 862.
[6] LU Yan, GEHAN J P, SHARKEY T D. Daylength and circadian effects on starch degradation and maltose metabolism [J]. Plant Physiol, 2005, 138(4): 2280 − 2291.
[7] GRAF A, SCHLERETH A, STITT M, et al. Circadian control of carbohydrate availability for growth in Arabidopsis plants at night [J]. Proc Natl Acad Sci, 2010, 107(20): 9458 − 9463.
[8] SULPICE R, FLIS A, IVAKOV A A, et al. Arabidopsis coordinates the diurnal regulation of carbon allocation and growth across a wide range of photoperiods [J]. Mol Plant, 2014, 7(1): 137 − 155.
[9] RIOU-KHAMLICHI C, MENGES M, HEALY J M S, et al. Sugar control of the plant cell cycle: differential regulation of Arabidopsis D-type cyclin gene expression [J]. Mol Cell Biol, 2000, 20(13): 4513 − 4521.
[10] STREB S, EICKE S, ZEEMAN S C. The simultaneous abolition of three starch hydrolases blocks transient starch breakdown in Arabidopsis [J]. J Biol Chem, 2012, 287(50): 41745 − 41756.
[11] YU T S, ZEEMAN S C, THORNEYCROFT D, et al. Alpha-amylase is not required for breakdown of transitory starch in Arabidopsis leaves [J]. J Biol Chem, 2005, 280(11): 9773 − 9779.
[12] SCHEIDIG A, FROHLICH A, SCHULZE S, et al. Down regulation of a chloroplast-targeted beta-amylase leads to a starch-excess phenotype in leaves [J]. Plant J, 2002, 30(5): 581 − 591.
[13] WEISE S E, KIM K S, STEWART R P, et al. β-maltose is the metabolically active anomer of maltose during transitory starch degradation [J]. Plant Physiol, 2005, 137(2): 756 − 761.
[14] MONROE J D, STORM A R, BADLEY E M, et al. β-amylase 1 and β-amylase 3 are plastidic starch hydrolases in Arabidopsis that seem to be adapted for different thermal, pH, and stress conditions [J]. Plant Physiol, 2014, 166(4): 1748 − 1763.
[15] 刘美, 张凤, 杨翠翠, 等. 小麦种子萌发早期淀粉降解关键酶活性及基因表达量研究[J]. 山东农业科学, 2014, 46(9): 39 − 45.

LIU Mei, ZHANG Feng, YANG Cuicui, et al. Study on key starch degrading enzyme activity and related gene expression level during early germination stage of wheat seed [J]. Shandong Agric Sci, 2014, 46(9): 39 − 45.
[16] LLOYD J R, KOSSMANN J. Transitory and storage starch metabolism: two sides of the same coin? [J]. Curr Opin Biotechnol, 2015, 32: 143 − 148.
[17] MARUYAMA K, TAKEDA M, KIDOKORO S, et al. Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A [J]. Plant Physiol, 2009, 150(4): 1972 − 1980.
[18] WANG Xiaoqing, REN Haiqing, ZHANG Bo, et al. Cell wall structure and formation of maturing fibres of moso bamboo (Phyllostachys pubescens) increase buckling resistance [J]. J R Soc Interface, 2012, 9(70): 988 − 996.
[19] 刘琳, 王玉魁, 王星星, 等. 毛竹出笋后快速生长期茎秆色素含量与反射光谱的相关性[J]. 生态学报, 2013, 33(9): 2703 − 2711.

LIU Lin, WANG Yukui, WANG Xingxing, et al. Correlation between pigment content and reflectance spectrum of Phyllostachys pubescens stems during its rapid growth stage [J]. Acta Ecol Sin, 2013, 33(9): 2703 − 2711.
[20] 许丽霞, 江洪, 张敏霞, 等. 安吉毛竹林生态系统光合作用特征及其环境影响因子研究[J]. 江西农业大学学报, 2017, 39(5): 928 − 937.

XU Lixia, JIANG Hong, ZHANG Minxia, et al. Net photosynthesis and its affecting factors of bamboo forest in Anji County [J]. Acta Agric Univ Jiangxi, 2017, 39(5): 928 − 937.
[21] 程路芸, 温星, 马丹丹, 等. 毛竹快速生长过程中碳水化合物的时空变化[J]. 浙江农林大学学报, 2017, 34(2): 261 − 267.

CHENG Luyun, WEN Xing, MA Dandan, et al. Spatial and temporal change of carbohydrates during rapid growth processes of Phyllostachys edulis [J]. J Zhejiang A&F Univ, 2017, 34(2): 261 − 267.
[22] BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal Biochem, 1976, 72(1/2): 248 − 254.
[23] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method [J]. Methods, 2001, 25(4): 402 − 408.
[24] FOYER C H, NOCTOR G. Photosynthetic nitrogen assimilation: inter-pathway control and signaling[M]//FOYER C H, NOCTOR G. Photosynthetic Nitrogen Assimilation and Associated Carbon and Respiratory Metabolism. Dordrecht: Kluwer Academic Publishers, 2002: 1 − 22.
[25] IZUMI M, HIDEMA J, MAKINO A, et al. Autophagy contributes to nighttime energy availability for growth in Arabidopsis [J]. Plant Physiol, 2013, 161(4): 1682 − 1693.
[26] 黄滔, 唐红, 刘玮, 等. 长沙地区3种优良观赏竹发笋及幼竹高生长规律[J]. 经济林研究, 2016, 34(2): 114 − 119.

HUANG Tao, TANG Hong, LIU Wei, et al. Shoot development and growth of three varieties of young bamboos of ornamental bamboo in Changsha [J]. Nonwood For Res, 2016, 34(2): 114 − 119.
[27] POKHILKO A, FLIS A, SULPICE R, et al. Adjustment of carbon fluxes to light conditions regulates the daily turnover of starch in plants: a computational model [J]. Mol Biosyst, 2014, 10(3): 613 − 627.
[28] LINGLE S E, THOMSON J L. Sugarcane internode composition during crop development [J]. Bioenerg Res, 2012, 5(1): 168 − 178.
[29] 翟建云, 孙建飞, 马元丹, 等. 毛竹快速生长期茎秆不同节间碳水化合物代谢的变化[J]. 竹子学报, 2018, 37(1): 42 − 48.

ZHAI Jianyun, SUN Jianfei, MA Yuandan, et al. Changes of carbohydrates metabolism in different internodes of Phyllostachys edulis during rapid growth period [J]. J Bamboo Res, 2018, 37(1): 42 − 48.
[30] 李丹丹, 许馨露, 翟建云, 等. 毛竹笋竹快速生长期可溶性糖质量分数与PeTPS1/PeSnRK1基因表达分析[J]. 浙江农林大学学报, 2017, 34(6): 1016 − 1023.

LI Dandan, XU Xinlu, ZHAI Jianyun, et al. Soluble sugar content and PeTPS1/PeSnRK1 gene expression in Phyllostachys edulis during rapid growth [J]. J Zhejiang A&F Univ, 2017, 34(6): 1016 − 1023.
[31] 宫长荣, 袁红涛, 周义和, 等. 烟叶在烘烤过程中淀粉降解与淀粉酶活性的研究[J]. 中国烟草科学, 2001, 22(2): 9 − 11.

GONG Changrong, YUAN Hongtao, ZHOU Yihe, et al. Studies on degradation of starch and change of activity of amylase of tobacco leaf during process of curing [J]. Chin Tob Sci, 2001, 22(2): 9 − 11.
[32] PONGRATZ P, BECK E. Diurnal oscillation of amylolytic activity in spinach chloroplasts [J]. Plant Physiol, 1978, 62(5): 687 − 689.
[33] 郑德森. 甘蔗不同品种(种)个体发育过程中叶片淀粉酶活性的变化[J]. 福建农学院学报, 1990, 19(3): 252 − 256.

ZHENG Desen. Changes of leaf amylase activity in different varieties (species) of sugarcane during the plant ontogeny [J]. J Fujian Agric Coll, 1990, 19(3): 252 − 256.
[34] 杨泽峰, 徐暑晖, 王一凡, 等. 禾本科植物β-淀粉酶基因家族分子进化及响应非生物胁迫的表达模式分析[J]. 科技导报, 2014, 32(31): 29 − 36.

YANG Zefeng, XU Shuhui, WANG Yifan, et al. Molecluar evolution and expression patterns under abiotic stresses of beta-amylase gene family in grasses [J]. Sci Tech Rev, 2014, 32(31): 29 − 36.
[35] HARMER S L, HOGENESCH J B, STRAUME M, et al. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock [J]. Science, 2000, 290(5499): 2110 − 2113.
[36] 阳江华, 龙翔宇, 秦云霞, 等. 橡胶树β-淀粉酶基因HbBAM1的克隆与表达分析[J]. 热带作物学报, 2018, 39(4): 92 − 98.

YANG Jianghua, LONG Xiangyu, QIN Yunxia, et al. Molecular cloning and expression analysis of HbBAM1 from Hevea brasiliensis [J]. Chin J Trop Crops, 2018, 39(4): 92 − 98.
[37] MITA S, SUZUKI-FUJII K, NAKAMURA K. Sugar-inducible expression of a gene for beta-amylase in Arabidopsis thaliana [J]. Plant Physiol, 1995, 107(3): 895 − 904.
[38] 齐继艳, 陈舟舟, 卢晗, 等. 植物β-淀粉酶[J]. 植物生理学报, 2008, 44(2): 334 − 340.

QI Jiyan, CHEN Zhouzhou, LU Han, et al. β-amylase in plants [J]. J Plant Physiol, 2008, 44(2): 334 − 340.