[1] GORE N T, SHAIKH S S, MALI A A, et al. Causes, consequences, and responses to drought stress in plants [J]. Life Sciences for Sustainable Development, 2022, 22(1): 127−139.
[2] FAROOQ M, WAHID A, ZAHRA N, et al. Advances in plant drought tolerance [J]. Journal of Plant Growth Regulation, 2024, 43: 3337−3369.
[3] GUPTA A, RICO-MEDINA A, CAÑO-DELGADO A I. The physiology of plant responses to drought [J]. Science, 2020, 368(6488): 266−269.
[4] FAROOQ M, HUSSAIN M, WAHID A, et al. Drought stress in plants: an overview [J]. Plant Responses to Drought Stress, 2015, 1: 1−35.
[5] WINKEL-SHIRLEY B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology [J]. Plant Physiology, 2001, 126(2): 485−493.
[6] PROCHÁZKOVÁ D, BOUŠOVÁ I, WILHELMOVÁ N. Antioxidant and prooxidant properties of flavonoids [J]. Fitoterapia, 2011, 82(4): 513−523.
[7] YU Wanwen, LIU Huimin, LUO Jiaqin, et al. Partial root-zone simulated drought induces greater flavonoid accumulation than full root-zone simulated water deficiency in the leaves of Ginkgo biloba[J/OL]. Environmental and Experimental Botany, 2022, 201: 104998[2025-08-25]. DOI: 10.1016/j.envexpbot.2022.104998.
[8] GAO Guori, LÜ Zhongrui, ZHANG Guoyun, et al. An ABA-flavonoid relationship contributes to the differences in drought resistance between different sea buckthorn subspecies [J]. Tree Physiology, 2021, 41(5): 744−755.
[9] LI Baozhu, FAN Ruonan, SUN Guiling, et al. Flavonoids improve drought tolerance of maize seedlings by regulating the homeostasis of reactive oxygen species [J]. Plant and Soil, 2021, 461(1): 389−405.
[10] WANG Feibing, ZHU Hong, KONG Weili, et al. The Antirrhinum AmDEL gene enhances flavonoids accumulation and salt and drought tolerance in transgenic Arabidopsis [J]. Planta, 2016, 244(1): 59−73.
[11] SHIVHARE R, MISHRA P, BADOLA P K, et al. PgF3H gene enhances drought tolerance in transgenic Arabidopsis by regulating flavonoid biosynthesis and stress response[J/OL]. Plant Cell Reports, 2025, 44(7): 150[2025-08-25]. DOI: 10.1007/s00299-025-03524-8.
[12] LIU Tianyi, YAN Fan, LIU Yajing, et al. The GmbHLH13-GmCHS7 module positively regulates isoflavones accumulation in soybean (Glycine max. L.)[J/OL]. Plant Physiology and Biochemistry, 2025, 227: 110162[2025-08-25]. DOI: 10.1016/j.plaphy.2025.110162.
[13] NAKABAYASHI R, YONEKURA-SAKAKIBARA K, URANO K, et al. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids [J]. The Plant Journal, 2014, 77(3): 367−379.
[14] LI Baozhu, FAN Ruonan, FAN Yanting, et al. The flavonoid biosynthesis regulator PFG3 confers drought stress tolerance in plants by promoting flavonoid accumulation[J/OL]. Environmental and Experimental Botany, 2022, 196: 104792[2025-08-25]. DOI: 10.1016/j.envexpbot.2022.104792.
[15] BULANOV A N, ANDREEVA E A, TSVETKOVA N V, et al. Regulation of flavonoid biosynthesis by the MYB-bHLH-WDR (MBW) complex in plants and its specific features in cereals[J/OL]. International Journal of Molecular Sciences, 2025, 26(2): 734[2025-08-25]. DOI: 10.3390/ijms26020734.
[16] TAO Ruiyan, YU Wenjie, GAO Yuhao, et al. Light-induced basic/helix-loop-Helix64 enhances anthocyanin biosynthesis and undergoes CONSTITUTIVELY PHOTOMORPHOGENIC1-mediated degradation in pear [J]. Plant Physiology, 2020, 184(4): 1684−1701.
[17] JIN Zilan, WANG Wanni, NAN Qiong, et al. VvNAC17, a grape NAC transcription factor, regulates plant response to drought-tolerance and anthocyanin synthesis[J/OL]. Plant Physiology and Biochemistry, 2025, 219: 109379[2025-08-25]. DOI: 10.1016/j.plaphy.2024.109379.
[18] CAO Yunlin, MEI Yuyang, ZHANG Ruining, et al. Transcriptional regulation of flavonol biosynthesis in plants[J/OL]. Horticulture Research, 2024, 11(4): uhae043[2025-08-25]. DOI: 10.1093/hr/uhae043.
[19] 郭彦宏, 张晶星, 杨永娟, 等. 6种野生广义菊属植物对干旱胁迫的生理响应[J]. 浙江农业学报, 2018, 30(8): 1349−1354.

GUO Yanhong, ZHANG Jingxing, YANG Yongjuan, et al. Response of six germplasms of Chrysanthemum and related genera to drought stress [J]. Acta Agriculturae Zhejiangensis, 2018, 30(8): 1349−1354.
[20] 巴亭亭. 干旱胁迫下太行菊类黄酮含量变化及相关基因的表达分析[D]. 北京: 北京林业大学, 2021.

BA Tingting. Changes of Flavonoid Content and Expression Analysis of Related Genes in Opisthopappus taihangensis Under Drought Stress[D]. Beijing: Beijing Forestry University, 2021.
[21] LUO Jiayi, LUO Chang, HAN Mingzheng, et al. A natural variation of flavone synthase Ⅱ gene enhances flavone accumulation and confers drought adaptation in Chrysanthemum [J]. New Phytologist, 2025, 247(3): 1445−1459.
[22] 刘海芳, 魏东伟, 刘全军, 等. 太行菊不同器官中绿原酸和4种黄酮类物质含量研究[J]. 天然产物研究与开发, 2013, 25(5): 646−651, 671.

LIU Haifang, WEI Dongwei, LIU Quanjun, et al. Determination of chlorogenic acid and four flavonoids in different organs of Opisthopappus taihangensis (Ling) Shih [J]. Natural Product Research and Development, 2013, 25(5): 646−651, 671.
[23] 孙翊, 李慧, 王亮生, 等. 一种快速有效分析烟草花冠中花青素苷的方法[J]. 植物学报, 2011, 46(2): 189−196.

SUN Yi, LI Hui, WANG Liangsheng, et al. Rapid, effective method for anthocyanin analysis in tobacco corolla [J]. Chinese Bulletin of Botany, 2011, 46(2): 189−196.
[24] MEHRTENS F, KRANZ H, BEDNAREK P, et al. The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis [J]. Plant Physiology, 2005, 138(2): 1083−1096.
[25] CAMACHO C, COULOURIS G, AVAGYAN V, et al. BLAST+: architecture and applications[J/OL]. BMC Bioinformatics, 2009, 10: 421[2025-08-25]. DOI: 10.1186/1471-2105-10-421.
[26] KATOH K, STANDLEY D M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability [J]. Molecular Biology and Evolution, 2013, 30(4): 772−780.
[27] SUYAMA M, TORRENTS D, BORK P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding Codon alignments [J]. Nucleic Acids Research, 2006, 34(suppl 2): W609−W612.
[28] MINH B Q, SCHMIDT H A, CHERNOMOR O, et al. Corrigendum to: IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era[J/OL]. Molecular Biology and Evolution, 2020, 37(8): 2461[2025-08-25]. DOI: 10.1093/molbev/msaa131.
[29] TAMURA K, STECHER G, KUMAR S. MEGA11: molecular evolutionary genetics analysis version 11 [J]. Molecular Biology and Evolution, 2021, 38(7): 3022−3027.
[30] YANG Yongjuan, GUO Yanhong, ZHONG Jian, et al. Root physiological traits and transcriptome analyses reveal that root zone water retention confers drought tolerance to Opisthopappus taihangensis[J/OL]. Scientific Reports, 2020, 10: 2627[2025-08-25]. DOI: 10.1038/s41598-020-59399-0.
[31] DENG Yin’ai, YANG Peng, ZHANG Qianle, et al. Genomic insights into the evolution of flavonoid biosynthesis and O-methyltransferase and glucosyltransferase in Chrysanthemum indicum[J/OL]. Cell Reports, 2024, 43(2): 113725[2025-08-25]. DOI: 10.1016/j.celrep.2024.113725.
[32] SONG Aiping, SU Jiangshuo, WANG Haibin, et al. Analyses of a chromosome-scale genome assembly reveal the origin and evolution of cultivated Chrysanthemum[J/OL]. Nature Communications, 2023, 14: 2021[2025-08-25]. DOI: 10.1038/s41467-023-37730-3.
[33] SONG Chi, LIU Yifei, SONG Aiping, et al. The Chrysanthemum nankingense genome provides insights into the evolution and diversification of Chrysanthemum flowers and medicinal traits [J]. Molecular Plant, 2018, 11(12): 1482−1491.
[34] WEN Xiaohui, LI Junzhuo, WANG Lili, et al. The Chrysanthemum lavandulifolium genome and the molecular mechanism underlying diverse Capitulum types[J/OL]. Horticulture Research, 2022, 9: uhab022[2025-08-25]. DOI: 10.1093/hr/uhab022.
[35] SHEN Fei, QIN Yajuan, WANG Rui, et al. Comparative genomics reveals a unique nitrogen-carbon balance system in Asteraceae[J/OL]. Nature Communications, 2023, 14: 4334[2025-08-25]. DOI: 10.1038/s41467-023-40002-9.
[36] BADOUIN H, GOUZY J, GRASSA C J, et al. The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution [J]. Nature, 2017, 546(7656): 148−152.
[37] FAN Wei, WANG Sen, WANG Hengchao, et al. The genomes of chicory, endive, great burdock and yacon provide insights into Asteraceae Palaeo-polyploidization history and plant inulin production [J]. Molecular Ecology Resources, 2022, 22(8): 3124−3140.
[38] CHEN Hongyu, GUO Miaoxian, DONG Shuting, et al. A chromosome-scale genome assembly of Artemisia argyi reveals unbiased subgenome evolution and key contributions of gene duplication to volatile terpenoid diversity[J/OL]. Plant Communications, 2023, 4(3): 100516[2025-08-25]. DOI: 10.1016/j.xplc.2023.100516.
[39] SHEN Qian, ZHANG Lida, LIAO Zhihua, et al. The genome of Artemisia annua provides insight into the evolution of Asteraceae family and artemisinin biosynthesis [J]. Molecular Plant, 2018, 11(6): 776−788.
[40] MELTON A E, CHILD A W, BEARD R S, et al. A haploid pseudo-chromosome genome assembly for a keystone sagebrush species of western North American rangelands[J/OL]. G3 Genes|Genomes|Genetics, 2022, 12(7): jkac122[2025-08-25]. DOI: 10.1093/g3journal/jkac122.
[41] ZHOU Yao, ZHANG Zhiyang, BAO Zhigui, et al. Graph pangenome captures missing heritability and empowers tomato breeding [J]. Nature, 2022, 606(7914): 527−534.
[42] LAMESCH P, BERARDINI T Z, LI Donghui, et al. The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools [J]. Nucleic Acids Research, 2012, 40(D1): D1202−D1210.
[43] TUSKAN G A, DIFAZIO S, JANSSON S, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray) [J]. Science, 2006, 313(5793): 1596−1604.
[44] JAILLON O, AURY J M, NOEL B, et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla [J]. Nature, 2007, 449(7161): 463−467.
[45] FILIAULT D L, BALLERINI E S, MANDÁKOVÁ T, et al. The Aquilegia genome provides insight into adaptive radiation and reveals an extraordinarily polymorphic chromosome with a unique history[J/OL]. eLife, 2018, 7: e36426[2025-08-25]. DOI: 10.7554/eLife.36426.
[46] HUFFORD M B, SEETHARAM A S, WOODHOUSE M R, et al. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes [J]. Science, 2021, 373(6555): 655−662.
[47] OUYANG Shu, ZHU Wei, HAMILTON J, et al. The TIGR Rice Genome Annotation Resource: improvements and new features [J]. Nucleic Acids Research, 2007, 35(suppl 1): D883−D887.
[48] CHEN Jinhui, HAO Zhaodong, GUANG Xuanmin, et al. Author Correction: Liriodendron genome sheds light on angiosperm phylogeny and species-pair differentiation[J/OL]. Nature Plants, 2019, 5(3): 328[2025-08-25]. DOI: 10.1038/s41477-019-0368-1.
[49] CAREY S B, AKÖZBEK L, LOVELL J T, et al. ZW sex chromosome structure in Amborella trichopoda [J]. Nature Plants, 2024, 10(12): 1944−1954.
[50] ZHANG Youzhi, FU Wei, PU Qi, et al. The white clover single-copy nuclear gene TrNAC002 promotes growth and confers drought resistance in plants through flavonoid synthesis[J/OL]. Plants, 2024, 14(1): 31[2025-08-25]. DOI: 10.3390/plants14010031.
[51] LI Ningning, WANG Xue, MA Binjie, et al. A leucoanthocyanidin dioxygenase gene (RtLDOX2) from the feral forage plant Reaumuria trigyna promotes the accumulation of flavonoids and improves tolerance to abiotic stresses [J]. Journal of Plant Research, 2021, 134(5): 1121−1138.
[52] LIU Chengwu, MURRAY J D. The role of flavonoids in nodulation host-range specificity: an update[J/OL]. Plants, 2016, 5(3): 33[2025-08-25]. DOI: 10.3390/plants5030033.
[53] FENG Xinghua, BAI Sining, ZHOU Lianxia, et al. Integrated analysis of transcriptome and metabolome provides insights into flavonoid biosynthesis of blueberry leaves in response to drought stress[J/OL]. International Journal of Molecular Sciences, 2024, 25(20): 11135[2025-08-25]. DOI: 10.3390/ijms252011135.
[54] CHANG Yuankai, SHI Mianmian, WANG Xiao, et al. A CRY1-HY5-MYB signaling cascade fine-tunes guard cell reactive oxygen species levels and triggers stomatal opening[J/OL]. The Plant Cell, 2025, 37(4): koaf064[2025-08-25]. DOI: 10.1093/plcell/koaf064.
[55] LEWIS D R, RAMIREZ M V, MILLER N D, et al. Auxin and ethylene induce flavonol accumulation through distinct transcriptional networks [J]. Plant Physiology, 2011, 156(1): 144−164.
[56] ZHAI Rui, ZHAO Yingxiao, WU Meng, et al. The MYB transcription factor PbMYB12b positively regulates flavonol biosynthesis in pear fruit[J/OL]. BMC Plant Biology, 2019, 19(1): 85[2025-08-25]. DOI: 10.1186/s12870-019-1687-0.