[1] SONG Zhaoliang, LIU Congqiang, MÜLLER K, et al. Silicon regulation of soil organic carbon stabilization and its potential to mitigate climate change [J]. Earth-Science Reviews, 2018, 185: 463 − 475.
[2] CONLEY D J, LIKENS G E, BUSO D C, et al. Deforestation causes increased dissolved silicate losses in the Hubbard Brook Experimental Forest [J]. Global Change Biology, 2018, 14(11): 2548 − 2554.
[3] SOMMER M, KACZOREK D, KUZYAKOV Y, et al. Silicon pools and fluxes in soils and landscapes: a review [J]. Journal of Plant Nutrition and Soil Science, 2006, 169(3): 310 − 329.
[4] SONG Zhaoliang, WANG Hailong, STRONG P J, et al. Increase of available soil silicon by Si-rich manure for sustainable rice production [J]. Agronomy for Sustainable Development, 2014, 34(4): 813 − 819.
[5] WANG Liying, ASHRAF U, CHANG Chunrong, et al. Effects of silicon and phosphatic fertilization on rice yield and soil fertility [J]. Journal of Soil Science and Plant Nutrition, 2019, 20(2): 557 − 565.
[6] HUANG Chengpeng, LI Yongchun, JIN Lin, et al. Effects of long-term planting on PhytOC storage and its distribution in soil physical fractions in moso bamboo forests in subtropical China [J]. Journal of Soils and Sediments, 2020, 20: 2317 − 2329.
[7] NAWAZ M A, ZAKHARENKO A M, ZEMCHENKO I V, et al. Phytolith formation in plants: from soil to cell [J/OL]. Plants, 2019, 8(8): 249[2023-05-13]. doi: 10.3390/plants8080249.
[8] HÖHN A, SOMMER M, KACZOREK D, et al. Silicon fractions in Histosols and Gleysols of a temperate grassland site [J]. Journal of Plant Nutrition and Soil Science, 2008, 171(3): 409 − 418.
[9] DERRY A, KURTZ C, ZIEGLER K, et al. Biological control of terrestrial silica cycling and export fluxes to watersheds [J]. Nature, 2005, 433(7027): 728 − 731.
[10] 蔡彦彬, 宋照亮, 姜培坤. 岩性对毛竹林土壤硅形态的影响[J]. 浙江农林大学学报, 2013, 30(6): 799 − 804.

CAI Yanbin, SONG Zhaoliang, JIANG Peikun. Silicon fractions in Phyllostachys edulis soils derived from different parent materials [J]. Journal of Zhejiang A&F University, 2013, 30(6): 799 − 804.
[11] 李蓓蕾, 宋照亮, 姜培坤, 等. 毛竹林生态系统植硅体的分布及其影响因素[J]. 浙江农林大学学报, 2014, 31(4): 547 − 553.

LI Beilei, SONG Zhaoliang, JIANG Peikun, et al. Phytolith distribution and carbon sequestration in China with Phyllostachys edulis [J]. Journal of Zhejiang A&F University, 2014, 31(4): 547 − 553.
[12] HOUBEN D, SONNET P, CORNELIS J T. Biochar from Miscanthus: a potential silicon fertilizer [J]. Plant and Soil, 2014, 374(1/2): 871 − 882.
[13] SUN Xing, LIU Qing, TANG Tong, et al. Silicon fertilizer application promotes phytolith accumulation in rice plants [J]. Frontiers in Plant Science, 2019, 10: 1 − 7.
[14] LI Zimin, DELVAUX B. Phytolith-rich biochar: a potential Si fertilizer in desilicated soils [J]. GCB Bioenergy, 2019, 11(11): 1264 − 1282.
[15] FRAYSSE F, CANTAIS F, POKROVSKY O S, et al. Aqueous reactivity of phytoliths and plant litter: physico-chemical constraints on terrestrial biogeochemical cycle of silicon [J]. Journal of Geochemical Exploration, 2006, 88(1/3): 202 − 205.
[16] BRADY P V, WALTHER J V. Kinetics of quartz dissolution at low temperatures [J]. Chemical Geology, 1990, 82: 253 − 264.
[17] HAYNES R J. A contemporary overview of silicon availability in agricultural soils [J]. Journal of Plant Nutrition and Soil Science, 2014, 177(6): 831 − 844.
[18] MINH N N, DULTZ S, GUGGENBERGER G. Effects of pretreatment and solution chemistry on solubility of rice-straw phytoliths [J]. Journal of Plant Nutrition and Soil Science, 2014, 177(3): 349 − 359.
[19] LIANG Yongchao, NIKOLIC M, BÉLANGER R, et al. Silicon in Agriculture: From Theory to Practice[M]. Dordrecht: Springer Dordrecht, 2015: 45−68.
[20] CORNELIS J T, DELVAUX B. Soil processes drive the biological silicon feedback loop [J]. Functional Ecology, 2016, 30(8): 1298 − 1310.
[21] QUIGLEY K M, DONATI G L, ANDERSON T M. Variation in the soil 'silicon landscape' explains plant silica accumulation across environmental gradients in Serengeti [J]. Plant and Soil, 2017, 410(1/2): 217 − 229.
[22] YANG Xiaomin, SONG Zhaoliang, van ZWIETEN L, et al. Spatial distribution of plant-available silicon and its controlling factors in paddy fields of China [J/OL]. Geoderma, 2021, 401: 115215[2023-05-13]. doi: 10.1016/j.geoderma.2021.115215.
[23] YANG Xiaomin, SONG Zhaoliang, YU Changxun, et al. Quantification of different silicon fractions in broadleaf and conifer forests of northern China and consequent implications for biogeochemical Si cycling [J/OL]. Geoderma, 2020, 361: 114036[2023-05-13]. doi: 10.1016/j.geoderma.2019.114036.
[24] LI Yongfu, ZHANG Jiaojiao, CHANG S X, et al. Long-term intensive management effects on soil organic carbon pools and chemical composition in moso bamboo (Phyllostachys pubescens) forests in subtropical China [J]. Forest Ecology and Management, 2013, 303: 121 − 130.
[25] ZHOU Guomo, MENG Cifu, JIANG Peikun, et al. Review of carbon fixation in bamboo forests in China [J]. The Botanical Review, 2011, 77(3): 262 − 270.
[26] 赵送来, 宋照亮, 姜培坤, 等. 西天目集约经营雷竹林土壤硅存在形态与植物有效性研究[J]. 土壤学报, 2012, 49(2): 331 − 338.

ZHAO Songlai, SONG Zhaoliang, JIANG Peikun, et al. Fractions of silicon in soils of intensively managed Phyllostachys pracecox stands and their plant-availability [J]. Acta Pedologica Sinica, 2012, 49(2): 331 − 338.
[27] HUANG Chengpeng, WANG Li, GONG Xiaoqiang, et al. Silicon fertilizer and biochar effects on plant and soil PhytOC concentration and soil PhytOC stability and fractionation in subtropical bamboo plantations [J/OL]. Science of the Total Environment, 2020, 715: 136846[2023-05-13]. doi: 10.1016/j.scitotenv.2020.136846.
[28] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999: 107 − 240.

LU Rukun. Analytical Methods of Soil and Agricultural Chemistry[M]. Beijing: China Agricultural Science and Technology Press, 1999: 107 − 240.
[29] GEORGIADIS A, SAUER D, HERRMANN L, et al. Development of a method for sequential Si extraction from soils [J]. Geoderma, 2013, 209/210: 251 − 261.
[30] ALBERT R M, BAMFORD M K, CABANES D. Taphonomy of phytoliths and macroplants in different soils from Olduvai Gorge (Tanzania) and the application to Plio-Pleistocene palaeoanthropological samples [J]. Quaternary International, 2006, 148(1): 78 − 94.
[31] SONG Zhaoliang, LIU Hongyan, LI Beilei, et al. The production of phytolith-occluded carbon in China’ s forests: implications to biogeochemical carbon sequestration [J]. Global Change Biology, 2013, 19(9): 2907 − 2915.
[32] SONG Zhaoliang, LIU Hongyan, STRÖMBERG C A, et al. Phytolith carbon sequestration in global terrestrial biomes [J]. Science of the Total Environment, 2017, 603/604: 502 − 509.
[33] 宁东峰, 刘战东, 肖俊夫, 等. 水稻土施用钢渣硅钙肥对土壤硅素形态和水稻生长的影响[J]. 灌溉排水学报, 2016, 35(8): 42 − 46.

NING Dongfeng, LIU Zhandong, XIAO Junfu, et al. Effects of application of steel slag-based silicon fertilizer on chemical forms of soil silicon and rice growth [J]. Journal of Irrigation and Drainage, 2016, 35(8): 42 − 46.
[34] 李沐霖, 卢树昌. 施硅对2个品种苜蓿生长及硅吸收利用影响研究[J]. 天津农业科学, 2022, 28(增刊1): 7 − 10.

LI Mulin, LU Shuchang. Study on the effects of two alfalfa varieties growth and silicon uptake under silicon application [J]. Tianjin Agricultural Sciences, 2022, 28(suppl 1): 7 − 10.
[35] WANG Yaofeng, XIAO Xin, ZHANG Kun, et al. Effects of biochar amendment on the soil silicon cycle in a soil-rice ecosystem [J]. Environmental Pollution, 2019, 248: 823 − 833.
[36] WANG Meng, WANG J J, WANG Xudong. Effect of KOH-enhanced biochar on increasing soil plant-available silicon [J]. Geoderma, 2018, 321: 22 − 31.
[37] LI Zimin, DELVAUX B, YANS J, et al. Phytolith-rich biochar increases cotton biomass and silicon-mineralomass in a highly weathered soil [J]. Journal of Plant Nutrition and Soil Science, 2018, 181(4): 537 − 546.
[38] 费颖恒, 邓海燕, 李敏烯, 等. 富硅生物炭对重金属污染土壤的改良修复作用[J]. 环境科学与技术, 2021, 44(12): 177 − 184.

FEI Yingheng, DENG Haiyan, LI Minxi, et al. Modification and remediation of heavy metals contaminated soil by silicon-rich biochar [J]. Environmental Science &Technology, 2021, 44(12): 177 − 184.
[39] WIJAYA K A. Effects of Si-fertilizer application through the leaves on yield and sugar content of sugarcane grown in soil containing abundant N [J]. Agriculture and Agricultural Science Procedia, 2016, 9: 158 − 162.
[40] CUONG T X, ULLAH H, DATTA A, et al. Effects of silicon-based fertilizer on growth, yield and nutrient uptake of rice in tropical zone of Vietnam [J]. Rice Science, 2017, 24(5): 283 − 290.
[41] ZAHOOR, SUN Dan, LI Ying, et al. Biomass saccharification is largely enhanced by altering wall polymer features and reducing silicon accumulation in rice cultivars harvested from nitrogen fertilizer supply [J]. Bioresource Technology, 2017, 243: 957 − 965.