[1] TURKER G, AKYOL Ç, INCE O, et al. Operating conditions influence microbial community structures, elimination of the antibiotic resistance genes and metabolites during anaerobic digestion of cow manure in the presence of oxytetracycline [J]. Ecotoxicology Environ Saf, 2018, 147: 349 − 356.
[2] LI Xuewen, XIE Yunfeng, WANG Jinfeng, et al. Influence of planting patterns on fluoroquinolone residues in the soil of an intensive vegetable cultivation area in northern China [J]. Sci Total Environ, 2013, 458/460: 63 − 69.
[3] HALLER M Y, MULLER S R, MCARDELL C S, et al. Quantification of veterinary antibiotics (sulfonamides and trimethoprim) in animal manure by liquid chromatography-mass spectrometry [J]. J Chromatogr A, 2002, 952(1): 111 − 120.
[4] HALLING-SØRENSEN B. Inhibition of aerobic growth and nitrification of bacteria in sewage sludge by antibacterial agents [J]. Arch Environ Contam Toxicol, 2001, 40(4): 451 − 460.
[5] XIE Yunfeng, LI Xuewen, WANG Jinfeng, et al. Spatial estimation of antibiotic residues in surface soils in a typical intensive vegetable cultivation area in China [J]. Sci Total Environ, 2012, 430: 126 − 131.
[6] CHENG Dengmiao, LIU Xinhui, WANG Liang, et al. Seasonal variation and sediment-water exchange of antibiotics in a shallower large lake in North China [J]. Sci Total Environ, 2014, 476/477: 266 − 275.
[7] BARROS-BECKER F, ROMERO J, PULGAR A, et al. Persistent oxytetracycline exposure induces an inflammatory process that improves regenerative capacity in zebrafish larvae[J]. PLoS One, 2012, 7(5): e36827. doi: 10.1371/journal.pone.0036827.
[8] CZEKALSKI N, BERTHOLD T, CAUCCI S, et al. Increased levels of multiresistant bacteria and resistance genes after wastewater treatment and their dissemination into Lake Geneva, Switzerland[J]. Front Microbiol, 2012, 3. doi: 10.3389/fmicb.2012.00106.
[9] GUO Xiaohong, XIE Chengyun, WANG Lijuan, et al. Biodegradation of persistent environmental pollutants by Arthrobacter sp. [J]. Environ Sci Pollut Res, 2019, 26(9): 8249 − 8443.
[10] MAKI T, HASEGAWA H, KITAMI H, et al. Bacterial degradation of antibiotic residues in marine fish farm sediments of Uranouchi Bay and phylogenetic analysis of antibiotic-degrading bacteria using 16S rDNA sequences [J]. Fisheries Sci, 2006, 72(4): 811 − 820.
[11] SHAO Sicheng, HU Yongyou, CHENG Ce, et al. Simultaneous degradation of tetracycline and denitrification by a novel bacterium, Klebsiella sp. SQY5 [J]. Chemosphere, 2018, 209: 35 − 43.
[12] LI Kuixiao, YEDILER A, YANG Min, et al. Ozonation of oxytetracycline and toxicological assessment of its oxidation by-products [J]. Chemosphere, 2008, 72(3): 473 − 478.
[13] GRANADOS-CHINCHILLA F, RODRIGUEZ C. Tetracyclines in food and feeding stuffs: from regulation to analytical methods, bacterial resistance, and environmental and health implications[J]. J Anal Methods Chem, 2017. doi: 10.1155/2017/1315497.
[14] HU Xiangang, ZHOU Qixing, LUO Yi. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China [J]. Environ Pollut, 2010, 158(9): 2992 − 2998.
[15] HOU Jie, WANG Chong, MAO Daqing, et al. The occurrence and fate of tetracyclines in two pharmaceutical wastewater treatment plants of Northern China [J]. Environ Sci Pollut Res, 2016, 23: 1722 − 1731.
[16] SHI Yanke, LIN Hui, MA Junwei, et al. Degradation of tetracycline antibiotics by Arthrobacter nicotianae OTC-16[J]. J Hazard Mater, 2021, 403: 123996. doi: 10.1016/j.jhazmat.2020.123996.
[17] 武鹏鹏, 王雅学, 沈洪艳. 土霉素对斜生栅藻的毒性效应研究[J]. 生态毒理学报, 2020, 15(4): 215 − 223.

WU Pengpeng, WANG Yaxue, SHEN Hongyan. Toxic effects of oxytetracycline on Scenedesmus obliquus [J]. Asian J Ecotoxicology, 2020, 15(4): 215 − 223.
[18] 邹宁, 魏丕伟, 肖波, 等. 扁藻细胞电镜观察的制样技术[J]. 烟台教育学院学报, 2004, 10(3): 73 − 75, 97.

ZOU Ning, WEI Piwei, XIAO Bo, et al. Sample preparation methods of Platymonas subcordiformis for the submicroscopic structure observation by transmission electric microscope (TEM) [J]. J Yantai Coll Educ, 2004, 10(3): 73 − 75, 97.
[19] QI Weining, LONG Jian, FENG Changqing, et al. Fe3+ enhanced degradation of oxytetracycline in water by Pseudomonas [J]. Water Res, 2019, 160: 361 − 370.
[20] HALLING-SØRENSEN B, LYKKEBERG A, INGERSLEV F, et al. Characterisation of the abiotic degradation pathways of oxytetracyclines in soil interstitial water using LC-MS-MS [J]. Chemosphere, 2003, 50(10): 1331 − 1342.
[21] LI Zhaojun, QI Weining, FENG Yao, et al. Degradation mechanisms of oxytetracycline in the environment [J]. J Integr Agric, 2019, 18(9): 1953 − 1960.
[22] HALLING-SØRENSEN B, SENGELØV G, TJRØNELUND J. Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria [J]. Arch Environ Contam Toxicol, 2002, 42(3): 263 − 271.
[23] XU Dongmei, XIAO Yingping, PAN Hua, et al. Toxic effects of tetracycline and its degradation products on freshwater green algae [J]. Ecotoxicology Environogy Saf, 2019, 174: 43 − 47.
[24] 张迪, 厉圆, 沈忱思, 等. 金霉素及其异构体降解产物对斜生栅藻的毒性效应研究[J]. 农业环境科学学报, 2019, 38(4): 756 − 764.

ZHANG Di, LI Yuan, SHEN Chensi, et al. Understanding the toxic effects of chlortetracyclineandits and its isomer degradation products on Scenedesmus obliquus [J]. J Agro-Environ Sci, 2019, 38(4): 756 − 764.
[25] STAEHELIN L A. Chloroplast structure: from chlorophyll granules to supra-molecular architecture of thylakoid membranes [J]. Photosynth Res, 2003, 76(1/3): 185 − 196.
[26] ALBERTSSON P. A quantitative model of the domain structure of the photosynthetic membrane [J]. Trends Plant Sci, 2001, 6(8): 349 − 354.