| [1] |
AGERBIRK N, OLSEN C E, NIELSEN J K. Seasonal variation in leaf glucosinolates and insect resistance in two types of Barbarea vulgaris ssp. arcuata[J]. Phytochemistry, 2001, 58(1): 91−100. DOI: 10.1016/S0031-9422(01)00151-0. |
| [2] |
XU Deyang, SANDEN N C H, HANSEN L L, et al. Export of defensive glucosinolates is key for their accumulation in seeds[J]. Nature, 2023, 617(7959): 132−138. DOI: 10.1038/s41586-023-05969-x. |
| [3] |
LAFARGA T, BOBO G, VIÑAS I, et al. Effects of thermal and non-thermal processing of cruciferous vegetables on glucosinolates and its derived forms[J]. Journal of Food Science and Technology, 2018, 55(6): 1973−1981. DOI: 10.1007/s13197-018-3153-7. |
| [4] |
CAVÒ E, TAVIANO M F, DAVÌ F, et al. Phenolic and volatile composition and antioxidant properties of the leaf extract of Brassica fruticulosa subsp. fruticulosa (Brassicaceae) growing wild in Sicily (Italy)[J]. Molecules, 2022, 27(9): 2768. DOI: 10.3390/molecules27092768. |
| [5] |
WANG Jinglei, QIU Yang, WANG Xiaowu, et al. Insights into the species-specific metabolic engineering of glucosinolates in radish (Raphanus sativus L. ) based on comparative genomic analysis[J]. Scientific Reports, 2017, 7: 16040. DOI: 10.1038/s41598-017-16306-4. |
| [6] |
ASSEFA A D, KIM S H, KO H C, et al. Leaf mustard (Brassica juncea) germplasm resources showed diverse characteristics in agro-morphological traits and glucosinolate levels[J]. Foods, 2023, 12(23): 4374. DOI: 10.3390/foods12234374. |
| [7] |
MALHOTRA B, KUMAR P, BISHT N C. Defense versus growth trade-offs: insights from glucosinolates and their catabolites[J]. Plant, Cell & Environment, 2023, 46(10): 2964-2984. DOI: 10.1111/pce.14462. |
| [8] |
AGERBIRK N, OLSEN C E. Glucosinolate structures in evolution[J]. Phytochemistry, 2012, 77: 16−45. DOI: 10.1016/j.phytochem.2012.02.005. |
| [9] |
陈彩霞, 王泽昊, FENG Jie, 等. 植物病原真菌的菌核研究进展[J]. 微生物学通报, 2018, 45(12): 2762−2768. CHEN Caixia, WANG Zehao, FENG Jie, et al. Sclerotia of plant pathogenic fungi[J]. Microbiology China, 2018, 45(12): 2762−2768. DOI:10.13344/j.microbiol.china.180117.
CHEN Caixia, WANG Zehao, FENG Jie, et al. Sclerotia of plant pathogenic fungi[J]. Microbiology China, 2018, 45(12): 2762−2768. DOI:10.13344/j.microbiol.china.180117. |
| [10] |
孙叶烁, 郝玲玉, 张杰, 等. 大白菜菌核病抗性鉴定方法研究[J]. 西北农林科技大学学报(自然科学版), 2019, 47(12): 123−129. SUN Yeshuo, HAO Lingyu, ZHANG Jie, et al. Identification method of resistance to Sclerotinia in Chinese cabbage[J]. Journal of Northwest A&F University (Natural Science Edition), 2019, 47(12): 123−129. DOI: 10.13207/j.cnki.jnwafu.2019.12.015.
SUN Yeshuo, HAO Lingyu, ZHANG Jie, et al. Identification method of resistance to Sclerotinia in Chinese cabbage[J]. Journal of Northwest A&F University (Natural Science Edition), 2019, 47(12): 123−129. DOI: 10.13207/j.cnki.jnwafu.2019.12.015. |
| [11] |
CHEN Rongshi, WANG Jiyi, SARWAR R, et al. Genetic breakthroughs in the Brassica napus-Sclerotinia sclerotiorum interactions[J]. Frontiers in Plant Science, 2023, 14: 1276055. DOI: 10.3389/fpls.2023.1276055. |
| [12] |
ZHU Biao, LIANG Zhile, ZANG Yunxiang, et al. Diversity of glucosinolates among common Brassicaceae vegetables in China[J]. Horticultural Plant Journal, 2023, 9(3): 365−380. DOI: 10.1016/j.hpj.2022.08.006. |
| [13] |
CHHAJED S, MOSTAFA I, HE Yan, et al. Glucosinolate biosynthesis and the glucosinolate-myrosinase system in plant defense[J]. Agronomy, 2020, 10(11): 1786. DOI: 10.3390/agronomy10111786. |
| [14] |
STOTZ H U, SAWADA Y, SHIMADA Y, et al. Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum[J]. The Plant Journal, 2011, 67(1): 81−93. DOI: 10.1111/j.1365-313X.2011.04578.x. |
| [15] |
MADLOO P, LEMA M, FRANCISCO M, et al. Role of major glucosinolates in the defense of kale against Sclerotinia sclerotiorum and Xanthomonas campestris pv. campestris[J]. Phytopathology, 2019, 109(7): 1246−1256. DOI: 10.1094/PHYTO-09-18-0340-R. |
| [16] |
MANN A, KUMARI J, KUMAR R, et al. Targeted editing of multiple homologues of GTR1 and GTR2 genes provides the ideal low-seed, high-leaf glucosinolate oilseed mustard with uncompromised defence and yield[J]. Plant Biotechnology Journal, 2023, 21(11): 2182−2195. DOI: 10.1111/pbi.14121. |
| [17] |
PARITOSH K, YADAVA S K, SINGH P, et al. A chromosome-scale assembly of allotetraploid Brassica juncea (AABB) elucidates comparative architecture of the A and B genomes[J]. Plant Biotechnology Journal, 2021, 19(3): 602−614. DOI: 10.1111/pbi.13492. |
| [18] |
KANG Lei, QIAN Lunwen, ZHENG Ming, et al. Genomic insights into the origin, domestication and diversification of Brassica juncea[J]. Nature Genetics, 2021, 53(9): 1392−1402. DOI: 10.1038/s41588-021-00922-y. |
| [19] |
SINGH K P, KUMARI P, RAI P K. Current status of the disease-resistant gene(s)/QTLs, and strategies for improvement in Brassica juncea[J]. Frontiers in Plant Science, 2021, 12: 617405. DOI: 10.3389/fpls.2021.617405. |
| [20] |
刘琳, 李珊珊, 袁仁文, 等. 芥菜主要化学成分及生物活性研究进展[J]. 北方园艺, 2018(15): 180−185. LIU Lin, LI Shanshan, YUAN Renwen, et al. A review of main chemical composition and biological activities of Brassica juncea (L. ) Czern et Coss[J]. Northern Horticulture, 2018(15): 180−185. DOI: 10.11937/bfyy.20174453.
LIU Lin, LI Shanshan, YUAN Renwen, et al. A review of main chemical composition and biological activities of Brassica juncea (L. ) Czern et Coss[J]. Northern Horticulture, 2018(15): 180−185. DOI: 10.11937/bfyy.20174453. |
| [21] |
SUN Bo, LIU Na, ZHAO Yanting, et al. Variation of glucosinolates in three edible parts of Chinese kale (Brassica alboglabra Bailey) varieties[J]. Food Chemistry, 2011, 124(3): 941−947. DOI: 10.1016/j.foodchem.2010.07.031. |
| [22] |
CAI Congxi, YUAN Wenxin, MIAO Huiying, et al. Functional characterization of BoaMYB51s as central regulators of indole glucosinolate biosynthesis in Brassica oleracea var. alboglabra Bailey[J]. Frontiers in Plant Science, 2018, 9: 1599. DOI: 10.3389/fpls.2018.01599. |
| [23] |
GUO Rongfang, SHEN Wangshu, QIAN Hongmei, et al. Jasmonic acid and glucose synergistically modulate the accumulation of glucosinolates in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2013, 64(18): 5707−5719. DOI: 10.1093/jxb/ert348. |
| [24] |
HARUN S, ABDULLAH-ZAWAWI M R, GOH H H, et al. A comprehensive gene inventory for glucosinolate biosynthetic pathway in Arabidopsis thaliana[J]. Journal of Agricultural and Food Chemistry, 2020, 68(28): 7281−7297. DOI: 10.1021/acs.jafc.0c01916. |
| [25] |
郝娇娇, 马永华, 陆彦池, 等. 硫苷介导的白菜抵御甜菜夜蛾幼虫取食胁迫的分子机制[J]. 浙江农林大学学报, 2023, 40(1): 81−88. HAO Jiaojiao, MA Yonghua, LU Yanchi, et al. Molecular mechanism of glucosinolate-mediated Brassica campestris ssp. chinensis against feeding stress of Spodoptera exigua larvae[J]. Journal of Zhejiang A&F University, 2023, 40(1): 81−88. DOI: 10.11833/j.issn.2095-0756.20220172.
HAO Jiaojiao, MA Yonghua, LU Yanchi, et al. Molecular mechanism of glucosinolate-mediated Brassica campestris ssp. chinensis against feeding stress of Spodoptera exigua larvae[J]. Journal of Zhejiang A&F University, 2023, 40(1): 81−88. DOI: 10.11833/j.issn.2095-0756.20220172. |
| [26] |
刘梦婷, 梅源, 刘佳琦, 等. 硫苷及其代谢产物对十字花科蔬菜风味形成的作用研究进展[J]. 食品科学, 2024, 45(23): 349−357. LIU Mengting, MEI Yuan, LIU Jiaqi, et al. Research progress on the role of glucosinolates and their metabolites for the flavor formation in cruciferous vegetables[J]. Food Science, 2024, 45(23): 349−357. DOI: 10.7506/spkx1002-6630-20240412-108.
LIU Mengting, MEI Yuan, LIU Jiaqi, et al. Research progress on the role of glucosinolates and their metabolites for the flavor formation in cruciferous vegetables[J]. Food Science, 2024, 45(23): 349−357. DOI: 10.7506/spkx1002-6630-20240412-108. |
| [27] |
XIA Rui, XU Liai, HAO Jiaojiao, et al. Transcriptome dynamics of Brassica juncea leaves in response to omnivorous beet armyworm (Spodoptera exigua, Hübner)[J]. International Journal of Molecular Sciences, 2023, 24(23): 16690. DOI: 10.3390/ijms242316690. |
| [28] |
丁云花, 何洪巨, 宋曙辉, 等. 不同西兰花品种中硫代葡萄糖苷的组分与含量分析[J]. 长江蔬菜, 2015(20): 70−73, 74. DING Yunhua, HE Hongju, SONG Shuhui, et al. Glucosinolate component and content analysis of different broccoli varieties[J]. Journal of Changjiang Vegetables, 2015(20): 70−73, 74. DOI: 10.3865/j.issn.1001-3547.2015.20.027.
DING Yunhua, HE Hongju, SONG Shuhui, et al. Glucosinolate component and content analysis of different broccoli varieties[J]. Journal of Changjiang Vegetables, 2015(20): 70−73, 74. DOI: 10.3865/j.issn.1001-3547.2015.20.027. |
| [29] |
ZHANG Yuanyuan, YANG Zhiquan, HE Yizhou, et al. Structural variation reshapes population gene expression and trait variation in 2, 105 Brassica napus accessions[J]. Nature Genetics, 2024, 56(11): 2538−2550. DOI: 10.1038/s41588-024-01957-7. |