[1] |
GUENTHER A, HEWITT C N, ERICKSON D, et al. A global model of natural volatile organic compound emissions [J]. Journal of Geophysical Research, 1995, 100(D5): 8873 − 8892. |
[2] |
DUDAREVA N, KLEMPIEN A, MUHLEMANN J K, et al. Biosynthesis, function and metabolic engineering of plant volatile organic compounds [J]. New Phytologist, 2013, 198(1): 16 − 32. |
[3] |
OKUMURA M, KOSUGI Y, TANI A. Biogenic volatile organic compound emissions from bamboo species in Japan [J]. Journal of Agricultural Meteorology, 2018, 74(1): 40 − 44. |
[4] |
LUN Xiaoxiu, LIN Ying, CHAI Fahe, et al. Reviews of emission of biogenic volatile organic compounds(BVOCs) in Asia [J]. Journal of Environmental Sciences, 2020, 95(9): 266 − 277. |
[5] |
YUAN Yali, SUN Zhihong, KANNASTE A, et al. Isoprenoid and aromatic compound emissions in relation to leaf structure, plant growth form and species ecology in 45 East-Asian urban subtropical woody species [J/OL]. Urban Forestry & Urban Greening, 2020, 53: 126705[2023-03-11]. doi: 10.1016/j.ufug.2020.126705. |
[6] |
ANTONELLI M, DONELLI D, BARBIERI G, et al. Forest volatile organic compounds and their effects on human health: a state-of-the-art review [J]. International Journal of Environmental Research and Public Health, 2020, 17(18): 6506 − 6541. |
[7] |
国家林业和草原局. 中国森林资源报告[M]. 北京: 中国林业出版社, 2019.
National Forestry and Grassland Administration. Forest Resources Report of China [M]. Beijing: China Forestry Publishing House, 2019. |
[8] |
吴建国, 徐天莹, 崔克强, 等. 未来气候变化对武夷山自然保护区毛竹异戊二烯排放速率的影响[J]. 环境科学学报, 2018, 38(4): 1653 − 1664.
WU Jianguo, XU Tianying, CUI Keqiang, et al. Effects of climate change on isoprene emission rate from leaves of Phyllostachys pubescens distributed in Wuyi Nature Reserve [J]. Acta Scientiae Circumstantiae, 2018, 38(4): 1653 − 1664. |
[9] |
CHANG Tingwei, KUME T, OKUMURA M, et al. Characteristics of isoprene emission from moso bamboo leaves in a forest in central Taiwan [J]. Atmospheric Environment, 2019, 211(1): 288 − 295. |
[10] |
GUO Ming, HU Zhengqing, STRONG P J, et al. Evaluating the environmental health effect of bamboo-derived volatile organic compounds through analysis the metabolic indices of the disorder animal model [J]. Biomedical and Environmental Sciences, 2015, 28(8): 595 − 605. |
[11] |
张莉, 白艳莹, 王效科, 等. 浙江省毛竹异戊二烯排放规律及其影响[J]. 生态学报, 2002, 22(8): 1339 − 1344.
ZHANG Li, BAI Yanying, WANG Xiaoke, et al. Isoprene emission of bamboo and its implication to ozone level in region [J]. Acta Ecologica Sinica, 2002, 22(8): 1339 − 1344. |
[12] |
SONG Yandong, PENG Chunju, WU Qinjiao, et al. Age effects of moso bamboo on leaf isoprene emission characteristics [J]. Front Plant Science, 2023, 14: 1 − 13. |
[13] |
CHANG T W, KOSUGI Y, KUME T, et al. Dependance of isoprene emission flux on leaf mass per area of Phyllostachys pubescens (moso bamboo) [J]. Journal of Agricultural Meteorology, 2022, 78(1): 1 − 7. |
[14] |
吴沁娇, 宋艳冬, 陶士杰, 等. 丽水白云国家森林公园5种典型林分挥发性有机化合物释放特征及其与环境因子的关系[J/OL]. 浙江农林大学学报, 2023, 40[2023-07-18]. doi: 10.11833/j.issn.2095-0756.20220676.
WU Qinjiao, SONG Yandong, TAO Shijie, et al. VOCs release characteristics of 5 typical stands in Baiyun National Forest Park and their relationship with environmental factors[J/OL]. Journal of Zhejiang A&F University, 2023, 40[2023-07-18]. doi: 10.11833/j.issn.2095-0756.20220676. |
[15] |
易夏. 浙江省五泄风景名胜区典型植物群落评价[D]. 杭州: 浙江农林大学, 2009.
YI Xia. Typical Plant Community Evaluation of Wuxie Science Spot in Zhejiang [D]. Hangzhou: Zhejiang A&F University, 2009. |
[16] |
吕嘉欣, 王翔, 项亨旺, 等. 毛竹释放挥发物对空气负离子及微生物的影响[J]. 竹子学报, 2020, 39(3): 49 − 57.
LÜ Jiaxin, WANG Xiang, XIANG Hengwang, et al. Effects of volatile components of Phyllostachys edulis on air negative ion and microorganisms [J]. Journal of Bamboo Research, 2020, 39(3): 49 − 57. |
[17] |
林静, 简毅, 骆宗诗, 等. 5种康养植物芬多精成分及含量研究[J]. 四川林业科技, 2018, 39(6): 13 − 19.
LIN Jing, JIAN Yi, LUO Zongshi, et al. A study of chemical components and contents in the phytoncidere from 5 species of forest health plants [J]. Journal of Sichuan Forestry Science and Technology, 2018, 39(6): 13 − 19. |
[18] |
吴敏. 5种杉科植物不同部位的精气成分[J]. 中南林学院学报, 2006, 26(3): 82 − 86.
WU Min. A study of chemical components in the volatile gas from 5 taxodiaceae species [J]. Journal of Central South Forestry College, 2006, 26(3): 82 − 86. |
[19] |
蒋冬月, 李永红. 植物挥发性有机物的研究进展[J]. 黑龙江农业科学, 2011(11): 143 − 149.
JIANG Dongyue, LI Yonghong. Research advances in volatile organic compounds of plant [J]. Heilongjiang Agricultural Sciences, 2011(11): 143 − 149. |
[20] |
CHEN Jungang, TANG Jing, YU Xinxiao. Environmental and physiological controls on diurnal and seasonal patterns of biogenic volatile organic compound emissions from five dominant woody species under field conditions [J/OL]. Environmental Pollution, 2020, 259: 113955[2023-03-11]. doi: 10.1016/j.envpol.2020.113955. |
[21] |
BARREIRA L M F, DUPORTÉ G, RNKK T, et al. Field measurements of biogenic volatile organic compounds in the atmosphere using solid-phase microextraction arrow [J]. Atmospheric Measurement Techniques, 2018, 11(2): 881 − 893. |
[22] |
王茜. 福州旗山森林公园毛竹游憩林生态保健功能研究[D]. 北京: 中国林业科学研究院, 2015.
WANG Qian. Study on Ecological Health Functions of Phyllostachys pubescens Forest in Qishan Mountain of Fuzhou [D]. Beijing: Chinese Academy of Forestry, 2015. |
[23] |
李娟, 王成, 彭镇华. 侧柏挥发物变化规律[J]. 东北林业大学学报, 2010, 38(3): 52 − 56.
LI Juan, WANG Cheng, PENG Zhenhua. A study on the volatile matter changes of Platycladus orientalis [J]. Journal of Northeast Forestry University, 2010, 38(3): 52 − 56. |
[24] |
吕嘉欣. 毛竹挥发物对空气负离子及空气微生物的影响[D]. 杭州: 浙江农林大学, 2021.
LÜ Jiaxin. Effect of Phyllostachys edulis on Negative Air Anion and Microorganism [D]. Hangzhou: Zhejiang A&F University, 2021. |
[25] |
徐超, 王海湘, 温国胜, 等. 从生理生态角度解析毛竹爆发式生长的原因[J]. 中南林业科技大学学报, 2018, 38(2): 64 − 69, 82.
XU Chao, WANG Haixiang, WEN Guosheng, et al. Analysis on the reason of Phyllostachys edulis explosive growth by physiological and ecological [J]. Journal of Central South University of Forestry &Technology, 2018, 38(2): 64 − 69, 82. |
[26] |
BAI Jianhui, GUENTHER A B, TURNIPSEED A, et al. Seasonal variations in whole-ecosystem BVOC emissions from a subtropical bamboo plantation in China [J]. Atmospheric Environment, 2016, 124: 12 − 21. |
[27] |
张莉, 王效科, 欧阳志云, 等. 中国森林生态系统的异戊二烯排放研究[J]. 环境科学, 2003, 24(1): 8 − 15.
ZHANG Li, WANG Xiaoke, OUYANG Zhiyun, et al. Estimation of isoprene emission from forest ecosystems in China [J]. Environmental Science, 2003, 24(1): 8 − 15. |
[28] |
井潇溪. 北京市森林植物挥发性有机物排放研究[D]. 北京: 北京林业大学, 2020.
JING Xiaoxi. Study on Biogenic Volatile Organic Compounds Emission from Forest Plants in Beijing[D]. Beijing: Beijing Forestry University, 2020. |
[29] |
王新雨, 张宜升, 刘子杨, 等. 全球变暖对植被源异戊二烯排放影响的研究进展[J]. 青岛理工大学学报, 2020, 41(4): 55 − 63.
WANG Xinyu, ZHANG Yisheng, LIU Ziyang, et al. A review of effects of global warming on biogenic isoprene emission [J]. Journal of Qingdao University of Technology, 2020, 41(4): 55 − 63. |
[30] |
LI Tao, BAGGESEN N, SECO R, et al. Seasonal and diel patterns of biogenic volatile organic compound fluxes in a subarctic tundra [J/OL]. Atmospheric Environment, 2023, 292(1): 119430[2023-03-11]. doi: 10.1016/j.atmosenv.2022.119430. |
[31] |
王志辉, 张树宇, 陆思华, 等. 北京地区植物VOCs排放速率的测定[J]. 环境科学, 2003, 24(2): 7 − 12.
WANG Zhihui, ZHANG Shuyu, LU Sihua, et al. Screenings of 23 plant species in Beijing for volatile organic compound emissions [J]. Environmental Science, 2003, 24(2): 7 − 12. |
[32] |
郭希娟, 田媛. 一品红挥发性有机物释放日变化规律研究[J]. 环境科学与技术, 2012, 35(10): 107 − 111.
GUO Xijuan, TIAN Yuan. Diurnal variations of volatile organic compounds released from Poinsettia [J]. Environmental Science &Technology, 2012, 35(10): 107 − 111. |
[33] |
路通, 田旭平. 圆柏叶挥发性成分夏初的日变化规律[J]. 广西林业科学, 2022, 51(3): 363 − 369.
LU Tong, TIAN Xuping. Diurnal change rules on volatile organic compounds of Sabina chinensis leaves in early summer [J]. Guangxi Forestry Science, 2022, 51(3): 363 − 369. |
[34] |
李海东, 高岩, 金幼菊. 珍珠梅花挥发性物质日动态变化的研究[J]. 内蒙古农业大学学报(自然科学版), 2004, 25(2): 54 − 59.
LI Haidong, GAO Yan, JIN Youjü. The daily dymamic variances of the VOCs releasing from flower of Sieria kirilowii (Regel) maxim [J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2004, 25(2): 54 − 59. |
[35] |
龚旭昇. 典型沉水植物的主要挥发性有机物组成及环境条件对其产生的影响[D]. 武汉: 湖北大学, 2019.
GONG Xusheng. Major Biogenic Volatile Organic Compounds of Typical Submerged Macrophytes and the Effects of Environmental Factors on These BVOCs Production[D]. Wuhan: Hubei University, 2019. |
[36] |
李洪远, 王芳, 熊善高, 等. 植物挥发性有机物的作用与释放影响因素研究进展[J]. 安全与环境学报, 2015, 15(2): 292 − 296.
LI Hongyuan, WANG Fang, XIONG Shangao, et al. Research review on the role and the influential factors of the biogenic volatile organic compounds [J]. Journal of Safety and Environment, 2015, 15(2): 292 − 296. |
[37] |
郭霞. 云南省典型乔木植物挥发性有机物释放规律研究[D]. 昆明: 昆明理工大学, 2012.
GUO Xia. The Research on Release Regularities of Biogenic Volatile Organic Compounds from the Typical Plants in Yunnan[D]. Kunming: Kunming University of Science and Technology, 2012. |
[38] |
任琴, 谢明惠, 张青文, 等. 不同温度、光照对虫害紫茎泽兰挥发物释放的影响[J]. 生态学报, 2010, 30(11): 3080 − 3086.
REN Qin, XIE Minghui, ZHANG Qingwen, et al. Effect on volatile compounds from damaged Eupatorium adenophorum by different temperature and light [J]. Acta Ecologica Sinica, 2010, 30(11): 3080 − 3086. |
[39] |
MOCHIZUKI T, TAKANASHI S, WADA R, et al. Canopy fluxes of monoterpene, isoprene and isoprene oxidation products in a pine-oak forest [J]. Journal of Agricultural Meteorology, 2020, 76(1): 36 − 43. |
[40] |
李莹莹, 李想, 陈建民. 植物释放挥发性有机物(BVOC)向二次有机气溶胶(SOA)转化机制研究[J]. 环境科学, 2011, 32(12): 3588 − 3592.
LI Yingying, LI Xiang, CHEN Jianmin. Study on transformation mechanism of SOA from biogenic VOC under UV-B condition [J]. Environmental Science, 2011, 32(12): 3588 − 3592. |
[41] |
张福珠, 苗鸿, 鲁纯. 落叶阔叶林释放异戊二烯的研究[J]. 环境科学, 1994, 15(1): 1 − 5, 92.
ZHANG Fuzhu, MIAO Hong, LU Chun. Study on emissions of isoprene from deciduous and broadleaf trees [J]. Environmental Science, 1994, 15(1): 1 − 5, 92. |
[42] |
林威, 赵振, 赖金美, 等. 温度和光照对红花檵木和南天竹异戊二烯和单萜烯释放的影响[J]. 环境科学学报, 2019, 39(9): 3126 − 3133.
LIN Wei, ZHAO Zhen, LAI Jinmei, et al. Effects of temperature and light on isoprene and monoterpene emission from Loropetalum chinense and Nandina domestica [J]. Acta Scientiae Circumstantiae, 2019, 39(9): 3126 − 3133. |