[1] 喻树迅. 中国棉花产业百年发展历程[J]. 农学学报, 2018, 8(1): 85 − 91.

YU Shuxun. 100 years of development of China’s cotton industry [J]. Journal of Agriculture, 2018, 8(1): 85 − 91.
[2] 喻树迅, 王寒涛, 魏恒玲, 等. 棉花早熟性研究进展及其应用[J]. 棉花学报, 2017, 29(增刊1): 1 − 10.

YU Shuxun, WANG Hantao, WEI Hengling, et al. Research progress and application of early maturity in upland cotton [J]. Cotton Science, 2017, 29(suppl 1): 1 − 10.
[3] 李培良, 雷亚平, 李亚兵, 等. 中国棉花产业发展现状与未来展望[J]. 农业展望, 2016, 12(12): 38 − 45.

LI Peiliang, LEI Yaping, LI Yabing, et al. Development status quo of China’s cotton industry and its outlook [J]. Agricultural Outlook, 2016, 12(12): 38 − 45.
[4] 喻树迅. 我国棉花生产现状与发展趋势[J]. 中国工程科学, 2013, 15(4): 9 − 13.

YU Shuxun. Present situation and development trend of cotton production in China [J]. Strategic Study of CAE, 2013, 15(4): 9 − 13.
[5] BÄURLE I, DEAN C. The timing of developmental transitions in plants [J]. Cell, 2006, 125(4): 655 − 664.
[6] YU Sha, CAO Li, ZHOU Chuanmiao, et al. Sugar is an endogenous cue for juvenile-to-adult phase transition in plants [J/OL]. eLife, 2013, 2 : e00269[2024-03-20]. doi:10.7554/eLife.00269.
[7] 刘永平, 杨静, 杨明峰. 植物开花调控途径[J]. 生物工程学报, 2015, 31(11): 1553 − 1566.

LIU Yongping, YANG Jing, YANG Mingfeng. Pathways of flowering regulation in plants [J]. Chinese Journal of Biotechnology, 2015, 31(11): 1553 − 1566.
[8] HELLIWELL C A, WOOD C C, ROBERTSON M, et al. The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex [J]. The Plant Journal, 2006, 46(2): 183 − 192.
[9] SRIKANTH A, SCHMID M. Regulation of flowering time: all roads lead to Rome [J]. Cellular and Molecular Life Sciences, 2011, 68(12): 2013 − 2037.
[10] ANDRÉS F, COUPLAND G. The genetic basis of flowering responses to seasonal cues [J]. Nature Reviews Genetics, 2012, 13(9): 627 − 639.
[11] CHOWDHURY Z, MOHANTY D, GIRI M K, et al. Dehydroabietinal promotes flowering time and plant defense in Arabidopsis via the autonomous pathway genes FLOWERING LOCUS D, FVE, and RELATIVE OF EARLY FLOWERING 6 [J]. Journal of Experimental Botany, 2020, 71(16): 4903 − 4913.
[12] TURCK F, FORNARA F, COUPLAND G. Regulation and identity of florigen: FLOWERING LOCUS T moves center stage [J]. Annual Review of Plant Biology, 2008, 59(1): 573 − 594.
[13] LI Xu, MA Dingbang, LU S X, et al. Blue light- and low temperature-regulated COR27 and COR28 play roles in the Arabidopsis circadian clock [J]. The Plant Cell, 2016, 28(11): 2755 − 2769.
[14] ROSAS U, MEI Yu, XIE Qiguang, et al. Variation in Arabidopsis flowering time associated with cis-regulatory variation in CONSTANS [J/OL]. Nature Communications, 2014, 5 (1): 3651[2024-03-20]. doi:10.1038/ncomms4651.
[15] VALVERDE F, MOURADOV A, SOPPE W, et al. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering [J]. Science, 2004, 303(5660): 1003 − 1006.
[16] LEE K, MAS P, SEO P J. The EC-HDA9 complex rhythmically regulates histone acetylation at the TOC1 promoter in Arabidopsis [J/OL]. Communications Biology, 2019, 2 : 143[2024-03-20]. doi:10.1038/s42003-019-0377-7.
[17] SOY J, LEIVAR P, GONZÁLEZ-SCHAIN N, et al. Molecular convergence of clock and photosensory pathways through PIF3-TOC1 interaction and co-occupancy of target promoters [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(17): 4870 − 4875.
[18] ARANA M V, TOGNACCA R S, ESTRAVIS-BARCALÁ M, et al. Physiological and molecular mechanisms underlying the integration of light and temperature cues in Arabidopsis thaliana seeds [J]. Plant, Cell & Environment, 2017, 40(12): 3113 − 3121.
[19] DELIS C, KROKIDA A, TOMATSIDOU A, et al. AtHESPERIN: a novel regulator of circadian rhythms with poly(A)-degrading activity in plants [J]. RNA Biology, 2016, 13(1): 68 − 82.
[20] HEMMES H, HENRIQUES R, JANG I C, et al. Circadian clock regulates dynamic chromatin modifications associated with Arabidopsis CCA1/LHY and TOC1 transcriptional rhythms [J]. Plant & Cell Physiology, 2012, 53(12): 2016 − 2029.
[21] FARINAS B, MAS P. Histone acetylation and the circadian clock: a role for the MYB transcription factor RVE8/LCL5 [J]. Plant Signaling & Behavior, 2011, 6(4): 541 − 543.
[22] LEGNAIOLI T, CUEVAS J, MAS P. TOC1 functions as a molecular switch connecting the circadian clock with plant responses to drought [J]. The EMBO Journal, 2009, 28(23): 3745 − 3757.
[23] ITO S, KAWAMURA H, NIWA Y, et al. A genetic study of the Arabidopsis circadian clock with reference to the TIMING OF CAB EXPRESSION 1 (TOC1) gene [J]. Plant and Cell Physiology, 2009, 50(2): 290 − 303.
[24] PARA A, FARRÉ E M, IMAIZUMI T, et al. PRR3 is a vascular regulator of TOC1 stability in the Arabidopsis circadian clock [J]. The Plant Cell, 2007, 19(11): 3462 − 3473.
[25] FUJIWARA S, WANG Lei, HAN Linqu, et al. Post-translational regulation of the Arabidopsis circadian clock through selective proteolysis and phosphorylation of pseudo-response regulator proteins [J]. The Journal of Biological Chemistry, 2008, 283(34): 23073 − 23083.
[26] THAIN S C, VANDENBUSSCHE F, LAARHOVEN L J J, et al. Circadian rhythms of ethylene emission in Arabidopsis [J]. Plant Physiology, 2004, 136(3): 3751 − 3761.
[27] WANG Cuiling, WANG Leili, LIU Qingqing, et al. Genome-wide identification and characterization of PRR gene family and their diurnal rhythmic expression profile in maize [J/OL]. International Journal of Genomics, 2022, 2022 : 6941607[2024-03-20]. doi:10.1155/2022/6941607.
[28] WANG Peiguo, WANG Liwei, ZHANG Lixin, et al. Genomic dissection and diurnal expression analysis reveal the essential roles of the PRR gene family in geographical adaptation of soybean [J/OL]. International Journal of Molecular Sciences, 2022, 23 (17): 9970[2024-03-20]. doi:10.3390/ijms23179970.
[29] 王浩, 卢银, 顾爱侠, 等. 大白菜lcc-1突变体生物钟核心基因在不同光周期下的表达分析[J]. 河北农业大学学报, 2019, 42(4): 21 − 28.

WANG Hao, LU Yin, GU Aixia, et al. Expression analysis of key clock genes of lcc-1 mutant from Chinese cabbage under different photoperiods [J]. Journal of Hebei Agricultural University, 2019, 42(4): 21 − 28.
[30] 甘卓然, 石文茜, 黎永力, 等. 大豆生物钟基因GmLNK1/2、GmRVE4/8和GmTOC1 CRISPR/Cas9组织表达分析及敲除靶点的鉴定[J]. 作物学报, 2020, 46(8): 1291 − 1300.

GAN Zhuoran, SHI Wenqian, LI Yongli, et al. Identification of CRISPR/Cas9 knockout targets and tissue expression analysis of circadian clock genes GmLNK1/2, GmRVE4/8, and GmTOC1 in soybean [J]. Acta Agronomica Sinica, 2020, 46(8): 1291 − 1300
[31] 刘璇, 张丽, 巩檑, 等. 生物钟对植物非生物胁迫应答调控的进展[J]. 基因组学与应用生物学, 2019, 38(9): 4160 − 4166.

LIU Xuan, ZHANG Li, GONG Lei, et al. Progress of circadian clock regulation of abiotic stress response in plants [J]. Genomics and Applied Biology, 2019, 38(9): 4160 − 4166.
[32] LI Xiao, WU Yuanlong, CHI Huabin, et al. Genome-wide identification and characterization of the genes involved in the flowering of cotton [J/OL]. International Journal of Molecular Sciences, 2022, 23 (14): 7940[2024-03-20]. doi: 10.3390/ijms23147940.
[33] YIN Xiaoyu, LIU Ye, ZHAO Hang, et al. GhCOL2 positively regulates flowering by activating the transcription of GhHD3A in upland cotton (Gossypium hirsutum L.) [J/OL]. Biochemical Genetics, 2024[2024-03-20]. doi: 10.1007/s10528-024-10727-3.
[34] 柳晔. 陆地棉CO蛋白对FT的调控研究[D]. 曲阜: 曲阜师范大学, 2021.

LIU Ye. Regulation of CO Protein on FT in Upland Cotton [D]. Qufu: Qufu Normal University, 2021.
[35] 张盼, 范术丽, 宋美珍, 等. 陆地棉开花相关基因GhFLP1的克隆与功能验证[J]. 棉花学报, 2016, 28(3): 199 − 207.

ZHANG Pan, FAN Shuli, SONG Meizhen, et al. Cloning and functional analysis of the flowering-related gene GhFLP1 from upland cotton (Gossypium hirsutum L. ) [J]. Cotton Science, 2016, 28(3): 199 − 207.
[36] 李洁, 范术丽, 宋美珍, 等. 陆地棉GhSPL3基因的克隆、亚细胞定位及表达分析[J]. 棉花学报, 2012, 24(5): 414 − 419.

LI Jie, FAN Shuli, SONG Meizhen, et al. Cloning, subcellular localization and expression analysis of GhSPL3 gene in Gossypium hirsutum L. [J]. Cotton Science, 2012, 24(5): 414 − 419.
[37] 张爱, 王彩香, 宿俊吉, 等. 陆地棉MADS-box家族基因鉴定及组织特异性表达分析[J]. 棉花学报, 2020, 32(5): 404 − 417.

ZHANG Ai, WANG Caixiang, SU Junji, et al. Identification of MADS-box family and analysis of tissue specific expression in Gossypium hirsutum L. [J]. Cotton Science, 2020, 32(5): 404 − 417.
[38] CHENG Xiaoqian, WANG Hantao, WEI Hengling, et al. The MADS transcription factor GhAP1.7 coordinates the flowering regulatory pathway in upland cotton (Gossypium hirsutum L. ) [J/OL]. Gene, 2021, 769 : 145235[2024-03-20]. doi:10.1016/j.gene.2020.145235.
[39] 孟超敏, 耿翡翡, 卿桂霞, 等. 陆地棉磷高效基因GhMGD3的克隆与表达分析[J]. 浙江农林大学学报, 2022, 39(6): 1203 − 1211.

MENG Chaomin, GENG Feifei, QING Guixia, et al. Cloning and expression of phosphorus efficient gene GhMGD3 in Gossypium hirsutum [J]. Journal of Zhejiang A& F University, 2022, 39(6): 1203 − 1211.
[40] 孟超敏, 耿翡翡, 卿桂霞, 等. 陆地棉低磷胁迫应答基因GhGDPD1的克隆与表达分析[J]. 浙江农林大学学报, 2023, 40(4): 723 − 730.

MENG Chaomin, GENG Feifei, QING Guixia, et al. Cloning and expression analysis of low phosphorus stress response gene GhGDPD1 in Gossypium hirsutum [J]. Journal of Zhejiang A&F University, 2023, 40(4): 723 − 730.
[41] LI Libei, ZHAO Shuqi, SU Jinji, et al. High-density genetic linkage map construction by F2 populations and QTL analysis of early-maturity traits in upland cotton (Gossypium hirsutum L. ) [J/OL]. PLoS One, 2017, 12 (8): e0182918[2024-03-20]. doi: 10.1371/journal.pone.0182918.
[42] LI Libei, ZHANG Chi, HUANG Jianqing, et al. Genomic analyses reveal the genetic basis of early maturity and identification of loci and candidate genes in upland cotton (Gossypium hirsutum L. ) [J]. Plant Biotechnology Journal, 2021, 19(1): 109 − 123.
[43] YU Jing, JUNG S, CHENG Chunhuai, et al. CottonGen: the community database for cotton genomics, genetics, and breeding research [J/OL]. Plants, 2021, 10 (12): 2805[2024-03-20]. doi: 10.3390/plants10122805.
[44] SWARBRECK D, WILKS C, LAMESCH P, et al. The Arabidopsis information resource (TAIR): gene structure and function annotation [J]. Nucleic Acids Research, 2007, 36(D1): D1009 − D1014.
[45] GOODSTEIN D M, SHU Shengqiang, HOWSON R, et al. Phytozome: a comparative platform for green plant genomics [J]. Nucleic Acids Research, 2012, 40(D1): D1178 − D1186.
[46] LU Shennan, WANG Jiyao, CHITSAZ F, et al. CDD/SPARCLE: the conserved domain database in 2020 [J]. Nucleic Acids Research, 2020, 48(D1): D265 − D268.
[47] ARTIMO P, JONNALAGEDDA M, ARNOLD K, et al. ExPASy: SIB bioinformatics resource portal [J]. Nucleic Acids Research, 2012, 40(W1): W597 − W603.
[48] KUMAR S, STECHER G, LI M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms [J]. Molecular Biology and Evolution, 2018, 35(6): 1547 − 1549.
[49] CHEN Chengjie, WU Ya, LI Jiawei, et al. TBtools-Ⅱ: A “one for all, all for one” bioinformatics platform for biological big-data mining [J]. Molecular Plant, 2023, 16(11): 1733 − 1742.
[50] BAILEY T L, JOHNSON J, GRANT C E, et al. The MEME Suite [J]. Nucleic Acids Research, 2015, 43(W1): W39 − W49.
[51] LESCOT M. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences [J]. Nucleic Acids Research, 2002, 30(1): 325 − 327.
[52] WANG Jingjing, DU Zhaohai, HUO Xuehan, et al. Genome-wide analysis of PRR gene family uncovers their roles in circadian rhythmic changes and response to drought stress in Gossypium hirsutum L. [J/OL]. PeerJ, 2020, 8 : e9936[2024-03-20]. doi:10.7717/peerj.9936.
[53] RONALD J, DAVIS S J. Making the clock tick: the transcriptional landscape of the plant circadian clock [J/OL]. F1000Research, 2017, 6 : 951[2024-03-20]. doi:10.12688/f1000research.11319.1.
[54] LIU Lingyun, JIA Mingzhu, WANG Shengnan, et al. Identification and characterization of cotton PHYTOCHROME-INTERACTING FACTORS in temperature-dependent flowering [J]. Journal of Experimental Botany, 2023, 74(12): 3765 − 3780.
[55] ZHANG Xiaohong, REN Zhongying, HU Genhai, et al. Functional divergence of GhAP1.1 and GhFUL2 associated with flowering regulation in upland cotton (Gossypium hirsutum L. ) [J/OL]. Journal of Plant Physiology, 2022, 275 : 153757[2024-03-20]. doi:10.1016/j.jplph.2022.153757.