[1] BUSTIN S A. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems [J]. J Mol Endocrinol, 2002, 29(1): 23-39.
[2] ANDERSEN C L, JENSEN J L, ØRNTOFT T F. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets [J]. Cancer Res, 2004, 64(15): 5245-5250.
[3] VANDESOMPELE J, de PRETER K, PATTYN F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes [J]. Genome Biol, 2002, 3(7): research0034. doi: 10.1186/gb-2002-3-7-research 0034.
[4] ZHANG Chao, FU Jianxin, WANG Yanjie, et al. Glucose supply improves petal coloration and anthocyanin biosynthesis in Paeonia suffruticosa 'Luoyang Hong' cut flowers [J]. Postharvest Biol Technol, 2015, 101: 73-81.
[5] BALDERMANN S, KATO M, KUROSAWA M, et al. Functional characterization of a carotenoid cleavage dioxygenase 1 and its relation to the carotenoid accumulation and volatile emission during the floral development of Osmanthus fragrans Lour. [J]. British J Pharmacol, 2010, 61(11): 2967-2977.
[6] WEI Libin, MIAO Hongmei, ZHAO Ruihong, et al. Identification and testing of reference genes for Sesame gene expression analysis by quantitative real-time PCR [J]. Planta, 2013, 237(3): 873-889.
[7] WANG Tao, HAO Ruijie, PAN Huitang, et al. Selection of suitable reference genes for quantitative real-time polymerase chain reaction in Prunus mume during flowering stages and under different abiotic stress conditions [J]. J Am Soc Hortic Sci, 2014, 139(2): 113-122.
[8] XU Xiaoyong, YANG Zeping, SUN Xilu, et al. Selection of reference genes for quantitative real-time PCR during flower bud development in CMS7311 of heading Chinese cabbage (Brassica rapa L. ssp. pekinensis) [J]. Acta Physiol Plant, 2014, 36(3): 809–814.
[9] THELLIN O, ZORZI W, LAKAYE B, et al. Housekeeping genes as internal standards: use and limits [J]. J Biotechnol, 1999, 75(2/3): 291-295.
[10] THELLIN O, ELMOUALIJ B, HEINEN E, et al. A decade of improvements in quantification of gene expression and internal standard selection [J]. Biotechnol Adv, 2009, 27(4): 323-333.
[11] GUÉNIN S, MAURIAT M, PELLOUX J, et al. Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references [J]. J Exp Bot, 2009, 60(2): 487-493.
[12] MUKESH J, AASHIMA N, TYAGI A K, et al. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR [J]. Biochem Biophys Res Commun, 2006, 345(2): 646-651.
[13] ZHANG Chao, FU Jianxin, WANG Yiguang, et al. Identification of suitable reference genes for gene expression normalization in the quantitative real-time PCR analysis of sweet osmanthus (Osmanthus fragrans Lour.) [J]. PLoS One, 2015, 10(8): e0136355. doi: 10.1371/journal.pone.0136355.
[14] PFAFFL M W, TICHOPAD A, PRGOMET C, et al. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations [J]. Biotechnol Lett, 2004, 26(6): 509-515.
[15] ARTICO S, NARDELI S M, BRILHANTE O, et al. Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data [J]. BMC Plant Biol, 2010, 10(1): 1-12.
[16] KONG Qiusheng, YUAN Jingxian, GAO Lingyun, et al. Identification of suitable reference genes for gene expression normalization in qRT-PCR analysis in watermelon [J]. PLoS One, 2014, 9(2): e90612. doi: 10.1371/journal.pone.0090612.
[17] ZHONG Haiying, CHEN Jianwen, LI Caiqin, et al. Selection of reliable reference genes for expression studies by reverse transcription quantitative real-time PCR in litchi under different experimental conditions [J]. Plant Cell Rep, 2011, 30(4): 641-653.
[18] 周良云, 莫歌, 王升, 等.基于实时荧光定量PCR对镉处理下黄花蒿内参基因稳定性的分析[J].中国中药杂志, 2014, 39(5): 777-784.

ZHOU Liangyun, MO Ge, WANG Sheng, et al. Stability analysis of reference gene based on real-time PCR in Artemisia annua under cadmium treatment [J]. Chin J Chin Mat Med, 2014, 39(5): 777-784.
[19] 成龙平, 胡海涛, 郭卫东, 等.牛奶子实时定量PCR分析中内参基因的评价与验证[J].林业科学, 2015, 51(5): 135-144.

CHENG Longping, HU Haitao, GUO Weidong, et al. Evaluation and validation of potential reference genes for quantitative real-time PCR analysis in Elaeagnus umbellata [J]. Sci Silv Sin, 2015, 51(5): 135-144.
[20] REID K E, OLSSON N, SCHLOSSER J, et al. An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development [J]. BMC Plant Biol, 2006, 6(1): 27. doi: 10.1186/1471-2229-6-27.
[21] MIGOCKA M, PAPIERNIAK A. Identification of suitable reference genes for studying gene expression in cucumber plants subjected to abiotic stress and growth regulators [J]. Mol Breed, 2011, 28(3): 343-357.
[22] CICIARELLO M, MANGIACASALE R, LAVIA P. Spatial control of mitosis by the GTPase Ran [J]. Cell Mol Life Sci Cmls, 2007, 64(15): 1891-1914.
[23] DI FIORE B, CICIARELLO M, LAVIA P. Mitotic functions of the Ran GTPase network: the importance of being in the right place at the right time [J]. Cell Cycle, 2004, 3(3): 303-311.
[24] XU Peipei, CAI Weiming. RAN1 is involved in plant cold resistance and development in rice (Oryza sativa) [J]. J Exp Bot, 2014, 65(12): 3277-3287.
[25] DELGADO-BENARROCH L, CAUSIER B, WEISS J, et al. FORMOSA controls cell division and expansion during floral development in Antirrhinum majus [J]. Planta, 2009, 229(6): 1219-1229.
[26] MELANIE B, HURT S, KURT F, et al. Characterization of Antirrhinum petal development and identification of target genes of the class B MADS box gene DEFICIENS [J]. Plant Cell, 2004, 16(12): 3197-3215.
[27] MALLONA I, LISCHEWSKI S, WEISS J, et al. Validation of reference genes for quantitative real-time PCR during leaf and flower development in Petunia hybrida [J]. BMC Plant Biol, 2010, 10(1): 200-203.
[28] REMANS T, SMEETS K K, MATHIJSEN D, et al. Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations [J]. Planta, 2008, 227(6): 1343-1349.
[29] SWIEZEWSKI S, LIU Fuquan, MAGUSIN A, et al. Cold-induced silencing by long antisense transcripts of an Arabidopsis polycomb target [J]. Nature, 2009, 462(7274): 799-802.
[30] DEKKERS B J W, LEO W, BASSEL G W, et al. Identification of reference genes for RT-qPCR expression analysis in Arabidopsis and tomato seeds [J]. Plant Cell Physiol, 2012, 53(1): 28-37.
[31] KLIE M, DEBENER T. Identification of superior reference genes for data normalisation of expression studies via quantitative PCR in hybrid roses (Rosa hybrida) [J]. BMC Res Not, 2011, 4(1): 518. doi:10.1186/1756-0500-4-518.
[32] CHANG Ermei, SHI Shengqing, LIU Jianfeng, et al. Selection of reference genes for quantitative gene expression studies in Platycladus orientalis (Cupressaceae) using real-time PCR [J]. PLoS One, 2012, 7(3): e33278. doi:10.1371/journal.pone.0033278.
[33] YANG Yanfang, HOU Shuang, CUI Guanghong, et al. Characterization of reference genes for quantitative real-time PCR analysis in various tissues of Salvia miltiorrhiza [J]. Mol Biol Rep, 2010, 37(1): 507-513.
[34] 王彦杰, 董丽, 张超, 等.牡丹实时定量PCR分析中内参基因的选择[J].农业生物技术学报, 2012, 20(5): 521-528.

WANG Yanjie, DONG Li, ZHANG Chao, et al. Reference gene selection for real-time quantitative PCR normalization in tree peony (Paeonia suffruticosa Andr.) [J]. J Agric Biotechnol, 2012, 20(5): 521-528.