[1] NELSO R, KRABILL W, MacLEAN G, et al. Determining forest canopy characteristics using airborne laster data [J]. Remote Sens Environ, 1984, 15(3): 201-212. doi:  10.1016/0034-4257(84)90031-2
[2] BAATZ M, SCHPE A. Object-oriented and multi-scale image analysis in semantic networks [C]//International Trade Center. Operationalization of Remote Sensing: 2nd International Symposium. Netherlands: International Trade Center, 1999: 16-20.
[3] FROHN R C, CHAUDHARY N. Multi-scale image segmentation and object-oriented processing for land cover classification [J]. GISci Remote Sens, 2008, 45(4): 377-391. doi:  10.2747/1548-1603.45.4.377
[4] 孙晓艳, 杜华强, 韩凝, 等. 面向对象多尺度分割的SPOT5影像毛竹林专题信息提取[J]. 林业科学, 2013, 49(10): 80-87. http://www.cnki.com.cn/Article/CJFDTOTAL-LYKE201310013.htm

SUN Xiaoyan, DU Huaqiang, HAN Ning, et al. Multi-scale segmentation, object-based extraction of moso bamboo forest from SPOT5 imagery [J]. Sci Silv Sin, 2013, 49(10): 80-87. http://www.cnki.com.cn/Article/CJFDTOTAL-LYKE201310013.htm
[5] SUN Xiaoyan, DU Huaqiang, HAN Ning, et al. Synergistic use of Landsat TM and SPOT5 imagery for object-based forest classification [J]. J Appl Remote Sens, 2014, 8(1): 83550-83564. doi:  10.1117/1.JRS.8.083550
[6] 都金康, 黄永胜, 冯学智, 等. SPOT卫星影像的水体提取方法及分类研究[J]. 遥感学报, 2001, 5(3): 214-219. http://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200103008.htm

DU Jinkang, HUANG Yongsheng, FENG Xuezhi, et al. Study on water bodies extraction and classification from SPOT image [J]. J Remote Sens, 2001, 5(3): 214-219. http://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200103008.htm
[7] 温兴平, 胡光道, 杨晓峰. 基于C5.0决策树分类算法的ETM+影像信息提取[J]. 地理与地理信息科学, 2007, 23(6): 26-29. http://www.cnki.com.cn/Article/CJFDTOTAL-DLGT200706006.htm

WEN Xingping, HU Guangdao, YANG Xiaofeng. Extracting information from ETM+ image using C5.0 decision tree algorithm [J]. Geogr Geo-Inf Sci, 2007, 23(6): 26-29. http://www.cnki.com.cn/Article/CJFDTOTAL-DLGT200706006.htm
[8] 刘充. 基于资源3号卫星遥感影像的城市绿地信息提取方法研究[D]. 太原: 太原理工大学, 2014.

LIU Chong. The Method of Urban Greenland Information Extraction Based on ZY-3 Remote Sensing Imagery [D]. Taiyuan: Taiyuan University of Technology, 2014.
[9] BLASCHKE T, HAY G J. Object-oriented image analysis and scale-space: theory and methods for modeling and evaluating multi-scale landscape structure [J]. Int Arch Photogr Remote Sens, 2001, 34(4): 22-29. https://www.researchgate.net/publication/216266277_Object-oriented_image_analysis_and_scale-space_Theory_and_methods_for_modeling_and_evaluating_multi-scale_landscape_structure
[10] FUKUSHIMA S. Division-based analysis of symmetry and its application [J]. IEEE Trans Patt Anal Mach Intell, 1997, 19(2): 144-147. doi:  10.1109/34.574795
[11] PUREVDORJ T S, TATEISHI R, INHIYARNA T, et al. Relationship between percent vegetation cover and vegetation indices [J]. Int J Remote Sens, 1998, 19(18): 3519-3535. doi:  10.1080/014311698213795
[12] KOSAKA N, AKIYAMA T, TSAI B, et al. Forest type classification using data fusion of multispectral and panchromatic high-resolution satellite imageries [J]. Int Geosci Remote Sens Symp, 2005, 4(5): 2980-2983. http://cn.bing.com/academic/profile?id=2153818778&encoded=0&v=paper_preview&mkt=zh-cn
[13] 陈利, 林辉, 孙华, 等. 基于决策树分类的森林信息提取研究[J]. 中南林业科技大学学报, 2013, 33(1): 46-51. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNLB201301009.htm

CHEN Li, LIN Hui, SUN Hua, et al. Studies on information extraction of forest based on decision tree classification [J]. J Cent South Univ For Technol, 2013, 33(1): 46-51. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNLB201301009.htm
[14] 李德仁, 王树良, 李德毅, 等. 论空间数据挖掘和知识发现的理论与方法[J]. 武汉大学学报: 信息科学版, 2002, 27(3): 221-233. http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200203000.htm

LI Deren, WANG Shuliang, LI Deyi, et al. Theories and technologies of spatial data mining and knowledge discovery [J]. Geom Inf Sci Wuhan Univ, 2002, 27(3): 221-233. http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200203000.htm
[15] HANSEN M, DUBAYAH R, DeFRIES R, et al. Classification trees: an alternative to traditional land cover classifiers [J]. Intl J Remote Sens, 1996, 17(5): 1075-1081. doi:  10.1080/01431169608949069