[1] ATANDA J. Environmental impacts of bamboo as a substitute constructional material in Nigeria [J]. Case Studies in Construction Materials, 2015, 3: 33−39.
[2] NIU Liangzhong, XU Wei, MA Pengfei, et al. Single-base methylome analysis reveals dynamic changes of genome-wide DNA methylation associated with rapid stem growth of woody bamboos[J/OL]. Planta, 2022, 256(3): 53[2025-04-13]. DOI: 10.1007/s00425-022-03962-8.
[3] 郑钧, 吴仁武, 史琰, 等. 竹类植物的主要环境效应研究进展[J]. 浙江农林大学学报, 2017, 34(2): 374−380.

ZHENG Jun, WU Renwu, SHI Yan, et al. Research progress on environmental effects of bamboo: a review [J]. Journal of Zhejiang A&F University, 2017, 34(2): 374−380.
[4] 刘萱, 邹龙海, 周明兵. 黄槽毛竹叶绿体基因组及毛竹种下分类群的叶绿体基因组序列比较[J]. 浙江农林大学学报, 2024, 41(5): 1037−1046.

LIU Xuan, ZOU Longhai, ZHOU Mingbing. Chloroplast genome of Phyllostachys edulis f. luteosulcata and comparison of chloroplast genome sequence of subspecies of Ph. edulis [J]. Journal of Zhejiang A&F University, 2024, 41(5): 1037−1046.
[5] HUANG Bin, HUANG Zhinuo, MA Ruifang, et al. Genome-wide identification and expression analysis of LBD transcription factor genes in Moso bamboo (Phyllostachys edulis)[J/OL]. BMC Plant Biology, 2021, 21(1): 296[2025-04-13]. DOI: 10.1186/s12870-021-03078-3.
[6] GAO Jian, ZHANG Ying, ZHANG Chunling, et al. Characterization of the floral transcriptome of Moso bamboo (Phyllostachys edulis) at different flowering developmental stages by transcriptome sequencing and RNA-seq analysis[J/OL]. PLoS One, 2014, 9(6): e98910[2025-04-13]. DOI: 10.1371/journal.pone.0098910.
[7] 丁雨龙, 林树燕, 魏强, 等. 竹子发育生物学研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 23−40.

DING Yulong, LIN Shuyan, WEI Qiang, et al. Advances in developmental biology of bamboos [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2022, 46(6): 23−40.
[8] GUO Rongfang, LI Wenjing, WANG Xingru, et al. Effect of photoperiod on the formation of cherry radish root [J]. Scientia Horticulturae, 2019, 244: 193−199.
[9] SRIVASTAVA G, SU Tao, MEHROTRA R C, et al. Bamboo fossils from Oligo-Pliocene sediments of northeast India with implications on their evolutionary ecology and biogeography in Asia [J]. Review of Palaeobotany and Palynology, 2019, 262: 17−27.
[10] LÜ Zhuo, ZHU Fangwei, JIN Diankun, et al. Seed germination and seedling growth of Dendrocalumus brandisii in vitro, and the inhibitory mechanism of colchicine[J/OL]. Frontiers in Plant Science, 2021, 12: 784581[2025-04-13]. DOI: 10.3389/fpls.2021.784581.
[11] TANAKA W, HIRANO H Y. Antagonistic action of TILLERS ABSENT1 and FLORAL ORGAN NUMBER2 regulates stem cell maintenance during axillary meristem development in rice [J]. New Phytologist, 2020, 225(2): 974−984.
[12] ETCHELLS J P, PROVOST C M, MISHRA L, et al. WOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independently of any role in vascular organisation[J]. Development, 2013, 140(10): 2224−2234.
[13] HIRAKAWA Y, KONDO Y, FUKUDA H. TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis [J]. The Plant Cell, 2010, 22(8): 2618−2629.
[14] KUCUKOGLU M, NILSSON J, ZHENG Bo, et al. WUSCHEL-RELATED HOMEOBOX4 (WOX 4)-like genes regulate cambial cell division activity and secondary growth in Populus trees[J]. New Phytologist, 2017, 215(2): 642−657.
[15] LI Jianbo, JIA Huixia, SUN Pei, et al. The WUSCHELa (PtoWUSa) is involved in developmental plasticity of adventitious root in poplar[J/OL]. Genes, 2020, 11(2): 176[2025-04-13]. DOI: 10.3390/genes11020176.
[16] TAJO S M, PAN Zhao’e, HE Shoupu, et al. Characterization of WOX genes revealed drought tolerance, callus induction, and tissue regeneration in Gossypium hirsutum[J/OL]. Frontiers in Genetics, 2022, 13: 928055[2025-04-13]. DOI: 10.3389/fgene.2022.928055.
[17] OHMORI Y, TANAKA W, KOJIMA M, et al. WUSCHEL-RELATED HOMEOBOX4 is involved in meristem maintenance and is negatively regulated by the CLE gene FCP1 in rice[J]. The Plant Cell, 2013, 25(1): 229−241.
[18] YASUI Y, OHMORI Y, TAKEBAYASHI Y, et al. WUSCHEL-RELATED HOMEOBOX4 acts as a key regulator in early leaf development in rice[J/OL]. PLoS Genetics, 2018, 14(4): e1007365[2025-04-13]. DOI: 10.1371/journal.pgen.1007365.
[19] 李翔宇. 毛竹WOX基因家族进化与初步功能研究[D]. 北京: 中国林业科学研究院, 2020.

LI Xiangyu. Evolutionary and Functional Analysis of WUSCHEL-related Homeobox Family of Moso Bamboo[D]. Beijing: Chinese Academy of Forestry, 2020.
[20] MU Changhong, JIANG Jutang, FANG Hui, et al. Unraveling developmental patterns and differentiation trajectories in a single developing internode of Moso Bamboo (Phyllostachys edulis)[J/OL]. Industrial Crops and Products, 2024, 222: 119646[2025-04-13]. DOI: 10.1016/j.indcrop.2024.119646.
[21] 周俊杰, 王艺光, 董彬, 等. 桂花OfPSYOfPDSOfHYB基因启动子克隆及表达特性分析[J]. 浙江农林大学学报, 2023, 40(1): 64−71.

ZHOU Junjie, WANG Yiguang, DONG Bin, et al. Cloning and expression characterization of OfPSY, OfPDS and OfHYB gene promoters in Osmanthus fragrans [J]. Journal of Zhejiang A&F University, 2023, 40(1): 64−71.
[22] 冯珊珊, 王璐, 周益, 等. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1−13.

FENG Shanshan, WANG Lu, ZHOU Yi, et al. Research progresses on WOX family genes in regulating plant development and abiotic stress response [J]. Biotechnology Bulletin, 2023, 39(5): 1−13.
[23] LIAN Gaibin, DING Zhiwen, WANG Qin, et al. Origins and evolution of WUSCHEL-related homeobox protein family in plant kingdom[J/OL]. The Scientific World Journal, 2014: 534140[2025-04-13]. DOI: 10.1155/2014/534140.
[24] BREUNINGER H, RIKIRSCH E, HERMANN M, et al. Differential expression of WOX genes mediates apical-basal axis formation in the Arabidopsis embryo [J]. Developmental Cell, 2008, 14(6): 867−876.
[25] HERNANDEZ-GARCIA C M, FINER J J. Identification and validation of promoters and cis-acting regulatory elements[J]. Plant Science, 2014, 217/218: 109−119.
[26] 刘利伟, 范付华, 徐刚. 麻风树JcGASA6基因启动子克隆及其功能初步分析[J]. 植物生理学报, 2023, 59(7): 1321−1328.

LIU Liwei, FAN Fuhua, XU Gang. Cloning and preliminary function analysis of Jatropha curcas JcGASA6 gene promoter [J]. Plant Physiology Journal, 2023, 59(7): 1321−1328.
[27] CUI Kai, HE Caiyun, ZHANG Jianguo, et al. Characteristics of temporal and spatial tissue development during the rapidly growing stage of Moso bamboo culms [J]. Forest Research, 2012, 25(4): 425−431.
[28] MA Yanfei, MIOTK A, ŠUTIKOVIĆ Z, et al. WUSCHEL acts as an auxin response rheostat to maintain apical stem cells in Arabidopsis[J/OL]. Nature Communications, 2019, 10(1): 5093[2025-04-13]. DOI: 10.1038/s41467-019-13074-9.
[29] LI Long, CHENG Zhanchao, MA Yanjun, et al. The association of hormone signalling genes, transcription and changes in shoot anatomy during moso bamboo growth [J]. Plant Biotechnology Journal, 2018, 16(1): 72−85.
[30] WEI Qiang, JIAO Chen, DING Yulong, et al. Cellular and molecular characterizations of a slow-growth variant provide insights into the fast growth of bamboo [J]. Tree Physiology, 2018, 38(4): 641−654.
[31] Brackmann K, Qi Jiyan, GEBERT M, et al. Spatial specificity of auxin responses coordinates wood formation[J/OL]. Nature Communications, 2018, 9: 875[2025-04-13]. DOI: 10.1038/s41467-018-03256-2.
[32] 陈铭. 毛竹(Phyllostachys edulis)笋快速生长的细胞路线图, 转录组图谱及环境调控因子[D]. 南京: 南京林业大学, 2023.

CHEN Ming. Rapid Growth of Moso Bamboo (Phyllostachys edulis): Cellular Roadmaps, Transcriptome Dynamics, and Environmental Factors[D]. Nanjing: Nanjing Forestry University, 2023.
[33] TANG Yuehui, LI Han, GUAN Yaxin, et al. Genome-wide identification of the physic nut WUSCHEL-related homeobox gene family and functional analysis of the abiotic stress responsive gene JcWOX5[J/OL]. Frontiers in Genetics, 2020, 11: 670[2025-04-13]. DOI: 10.3389/fgene.2020.00670.
[34] HAN Ni, TANG Rui, CHEN Xueqian, et al. Genome-wide identification and characterization of WOX genes in Cucumis sativus [J]. Genome, 2021, 64(8): 761−776.
[35] 单强强, 阳文龙, 李英洁, 等. 乌拉尔图小麦WOX基因的克隆与表达分析[J]. 麦类作物学报, 2019, 39(8): 903−911.

SHAN Qiangqiang, YANG Wenlong, LI Yingjie, et al. Cloning and expression analysis of WOX genes in Triticum Urartu [J]. Journal of Triticeae Crops, 2019, 39(8): 903−911.
[36] 陈运梁, 邹竹荣, 杨双龙. 外源茉莉酸甲酯对盐胁迫下小桐子幼苗渗透调节和脯氨酸代谢的影响[J]. 西北植物学报, 2023, 43(5): 794−804.

CHEN Yunliang, ZOU Zhurong, YANG Shuanglong. Effect of exogenous methyl jasmonate on osmotic adjustment capacity and proline metabolism of Jatropha curcas seedlings under salt stress [J]. Acta Botanica Boreali-Occidentalia Sinica, 2023, 43(5): 794−804.
[37] 杨文博, 严汉池. 植物水杨酸受体NPR结构与功能研究进展[J]. 中国野生植物资源, 2023, 42(11): 70−76.

YANG Wenbo, YAN Hanchi. Research progress on structure and function of plant salicylic acid receptor NPR [J]. Chinese Wild Plant Resources, 2023, 42(11): 70−76.
[38] 焦龙, 陈勋, 谭荣荣, 等. 植物茉莉酸与水杨酸信号途径互作研究进展[J]. 植物生理学报, 2023, 59(8): 1489−1504.

JIAO Long, CHEN Xun, TAN Rongrong, et al. Research progress on the interaction between jasmonic acid and salicylic acid signaling pathways in plants [J]. Plant Physiology Journal, 2023, 59(8): 1489−1504.