[1] |
LIU Junjie, ZHENG Chunyu, SONG Changchun, et al. Conversion from natural wetlands to paddy field alters the composition of soil bacterial communities in Sanjiang Plain, Northeast China [J]. Annals of Microbiology, 2014, 64(3): 1395 − 1403. |
[2] |
TAUFIK M, SETIAWAN B I, van LANEN H A J. Modification of a fire drought index for tropical wetland ecosystems by including water table depth [J]. Agricultural and Forest Meteorology, 2015, 203: 1 − 10. |
[3] |
JIANG Tingting, PAN Jinfen, PU Xinming, et al. Current status of coastal wetlands in China: degradation, restoration, and future management [J]. Estuarine,Coastal and Shelf Science, 2015, 164: 265 − 275. |
[4] |
王兴菊, 许士国, 张奇. 湿地水文研究进展综述[J]. 水文, 2006(4): 1 − 5, 9.
WANG Xingju, XU Shiguo, ZHANG Qi. Review of wetland hydrology research [J]. Journal of China Hydrology, 2006(4): 1 − 5, 9. |
[5] |
肖博文. 气候变化下高寒草地土壤微生物群落结构变化及季节动态[D]. 兰州: 兰州大学, 2022.
XIAO Bowen. Changes in Soil Microbial Community Structure and Its Seasonal Dynamics in an Alpine Grassland under Climate Change [D]. Lanzhou: Lanzhou University, 2022. |
[6] |
NANNIPIERI P, ASCHER J, CECCHERINI M T, et al. Microbial diversity and soil functions [J]. European Journal of Soil Science, 2003, 54(4): 655 − 670. |
[7] |
林春英, 李希来, 张玉欣, 等. 黄河源区高寒沼泽湿地土壤微生物群落结构对不同退化的响应[J]. 环境科学, 2021, 42(8): 3971 − 3984.
LIN Chunying, LI Xilai, ZHANG Yuxin, et al. Responses of different degradation stages of alpine wetland on soil microbial community in the Yellow River Source Zone [J]. Environmental Science, 2021, 42(8): 3971 − 3984. |
[8] |
张杰, 胡维, 刘以珍, 等. 鄱阳湖湿地不同土地利用方式下土壤微生物群落功能多样性[J]. 生态学报, 2015, 35(4): 965 − 971.
ZHANG Jie, HU Wei, LIU Yizhen, et al. Response of soil microbial functional diversity to different land-use types in wetland of Poyang Lake, China [J]. Acta Ecologica Sinica, 2015, 35(4): 965 − 971. |
[9] |
徐飞. 垦殖与恢复对三江平原沼泽湿地土壤微生物群落结构与功能多样性的影响[D]. 哈尔滨: 东北林业大学, 2017.
XU Fei. Effect of Reclamation and Restoration on Soil Microbial Community Structures and Functional Diversity in Marshland in the Sanjiang Plain [D]. Harbin: Northeast Forestry University, 2017. |
[10] |
王娜, 高婕, 魏静, 等. 三江平原湿地开垦对土壤微生物群落结构的影响[J]. 环境科学, 2019, 40(5): 2375 − 2381.
WANG Na, GAO Jie, WEI Jing, et al. Effects of wetland reclamation on soil microbial community structure in the Sanjiang Plain [J]. Environmental Science, 2019, 40(5): 2375 − 2381. |
[11] |
许楠, 刑军会, 隋心, 等. 土地利用方式对高寒地区湿地土壤细菌群落结构和多样性的影响[J]. 江苏农业科学, 2021, 49(24): 233 − 240.
XU Nan, XING Junhui, SUI Xin, et al. Effects of land use patterns on structure and diversity of soil bacterial community in wetland of alpine region [J]. Jiangsu Agricultural Sciences, 2021, 49(24): 233 − 240. |
[12] |
肖德荣, 田昆, 张利权. 滇西北高原纳帕海湿地植物多样性与土壤肥力的关系[J]. 生态学报, 2008, 28(7): 3116 − 3123.
XIAO Derong, TIAN Kun, ZHANG Liquan. Relationship between plant diversity and soil fertility in Napahai wetland of Northwestern Yunnan Plateau [J]. Acta Ecologica Sinica, 2008, 28(7): 3116 − 3123. |
[13] |
陆梅. 纳帕海湿地退化对土壤微生物群落结构及多样性的影响[D]. 北京: 北京林业大学, 2018.
LU Mei. Effects of Wetlands Degradation on Structure and Biodiversity of Soil Microbial Community in Napahai Plateau Wetlands [D]. Beijing: Beijing Forestry University, 2018. |
[14] |
唐明艳, 杨永兴. 不同人为干扰下纳帕海湖滨湿地植被及土壤退化特征[J]. 生态学报, 2013, 33(20): 6681 − 6693.
TANG Mingyan, YANG Yongxing. Analysis of vegetation and soil degradation characteristics under different human disturbance in lakeside wetland, Napahai [J]. Acta Ecologica Sinica, 2013, 33(20): 6681 − 6693. |
[15] |
田昆, 莫剑锋, 陆梅, 等. 人为活动干扰对纳帕海湿地环境影响的研究[J]. 长江流域资源与环境, 2004, 13(3): 292 − 295.
TIAN Kun, MO Jianfeng, LU Mei, et al. Human disturbances on the ecological environment degradation of Napahai wetland in the Upstream of Yangtze River [J]. Resources and Environment in the Yangtze Basin, 2004, 13(3): 292 − 295. |
[16] |
鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2013: 22 − 113.
BAO Shidan. Soil Agrochemical Analysis [M]. Beijing: China Agriculture Press, 2013: 22 − 113. |
[17] |
赵萌, 印春生, 厉成伟, 等. Miseq测序分析围垦后海三棱藨草湿地土壤微生物群落多样性的季节变化[J]. 上海海洋大学学报, 2018, 27(5): 718 − 727.
ZHAO Meng, YIN Chunsheng, LI Chengwei, et al. Using Miseq sequencing to analyze seasonal soil microbial community dynamics in reclaimed Scirpus mariqueter coastal wetlands [J]. Journal of Shanghai Ocean University, 2018, 27(5): 718 − 727. |
[18] |
李金业, 陈庆锋, 李青, 等. 黄河三角洲滨海湿地微生物多样性及其驱动因子[J]. 生态学报, 2021, 41(15): 6103 − 6114.
LI Jinye, CHEN Qingfeng, LI Qing, et al. Analysis of microbial diversity and driving factors in coastal wetlands of the Yellow River Delta [J]. Acta Ecologica Sinica, 2021, 41(15): 6103 − 6114. |
[19] |
李玉倩, 马俊伟, 高超, 等. 青藏高原高寒湿地春夏两季根际与非根际土壤反硝化速率及nirS型反硝化细菌群落特征分析[J]. 环境科学, 2021, 42(10): 4959 − 4967.
LI Yuqian, MA Junwei, GAO Chao, et al. Denitrification rates and nirS-type denitrifying bacteria community structure characteristics of bulk and rhizosphere soil in spring and summer in the alpine wetlands of the Qinghai-Tibet Plateau [J]. Environmental Science, 2021, 42(10): 4959 − 4967. |
[20] |
JIANG Shuai, XING Yajuan, LIU Guancheng, et al. Changes in soil bacterial and fungal community composition and functional groups during the succession of boreal forests [J/OL]. Soil Biology and Biochemistry, 2021, 161: 108393[2023-04-25]. doi: 10.1016/j.soilbio.2021.108393. |
[21] |
郑文玲, 赵鸿彬, 韩冰, 等. 退化草原植物生长季土壤微生物群落结构与多样性变化[J]. 中国草地学报, 2021, 43(10): 46 − 54.
ZHENG Wenling, ZHAO Hongbin, HAN Bing, et al. Changes of soil microbial community structure and diversity in plant growing season of degraded grassland [J]. Chinese Journal of Grassland, 2021, 43(10): 46 − 54. |
[22] |
MENTZER J L, GOODMAN R M, BALSER T C. Microbial response over time to hydrologic and fertilization treatments in a simulated wet prairie [J]. Plant and Soil, 2006, 284(1/2): 85 − 100. |
[23] |
ZHAO Zhiyuan, MA Yanting, FENG Tianyu, et al. Assembly processes of abundant and rare microbial communities in orchard soil under a cover crop at different periods [J/OL]. Geoderma, 2022, 406: 115543[2023-04-25]. doi: 10.1016/j.geoderma.2021.115543. |
[24] |
吴刚, 席宇, 赵以军. 溶藻细菌研究的最新进展[J]. 环境科学研究, 2002, 15(5): 43 − 46.
WU Gang, XI Yu, ZHAO Yijun. The latest development of research on algae-lysing bacteria [J]. Research of Environmental Sciences, 2002, 15(5): 43 − 46. |
[25] |
魏亚情, 吴志祥, 杨川, 等. 海南岛橡胶林土壤细菌群落多样性的季节变化及其影响因子[J]. 中南林业科技大学学报, 2022, 42(7): 28 − 34.
WEI Yaqing, WU Zhixiang, YANG Chuan, et al. Seasonal changes and influencing factors of soil bacterial diversity in rubber plantations on Hainan Island [J]. Journal of Central South University of Forestry &Technology, 2022, 42(7): 28 − 34. |
[26] |
COTTRELL M T, KIRCHMAN D L. Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter [J]. Applied and Environmental Microbiology, 2000, 66(4): 1692 − 1697. |
[27] |
刘国红, 刘波, 林乃铨, 等. 芽孢杆菌的系统进化及其属分类学特征[J]. 福建农业学报, 2008, 23(4): 436 − 449.
LIU Guohong, LIU Bo, LIN Naiquan, et al. Phyletic evolution and taxonomic characteristics of Bacillus [J]. Fujian Journal of Agricultural Sciences, 2008, 23(4): 436 − 449. |
[28] |
WANG Yu, SHENG Huafang, HE Yan, et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags [J]. Applied and Environmental Microbiology, 2012, 78(23): 8264 − 8271. |
[29] |
李然, 孙小丁, 张苓花. 解磷微生物的分离筛选及其解磷能力[J]. 大连轻工业学院学报, 2004, 23(2): 85 − 87.
LI Ran, SUN Xiaoding, ZHANG Linghua. Isolation and identification of aquatic phosphate-solubilizing microbe and their phosphate solubilizing capacity [J]. Journal of Dalian Institute of Light Industry, 2004, 23(2): 85 − 87. |
[30] |
PANKRATOV T A, IVANOVA A O, DEDYSH S N, et al. Bacterial populations andenvironmental factors controlling cellulose degradation in an acidic Sphagnum peat [J]. Environmental Microbiology, 2021, 13(7): 1800 − 1814. |
[31] |
FAWAZ M N. Revealing the Ecological Role of Gemmatimonadetes through Cultivation and Molecular Analysis of Agricultural Soils [M]. The Knoxville: University of Tennessee, 2013. |
[32] |
张丹丹, 张丽梅, 沈菊培, 等. 珠穆朗玛峰不同海拔梯度上土壤细菌和真菌群落变化特征[J]. 生态学报, 2018, 38(7): 2247 − 2261.
ZHANG Dandan, ZHANG Limei, SHEN Jupei, et al. Soil bacterial and fungal community succession along an altitude gradient on Mount Everest [J]. Acta Ecologica Sinica, 2018, 38(7): 2247 − 2261. |
[33] |
SHEIK C S, MITCHELL T W, RIZVI F Z, et al. Exposure of soil microbial communities to chromium and arsenic alters their diversity and atructure [J/OL]. PLoS One, 2012, 7(6): 40059[2023-04-25]. doi: 10.1371/journal.pone.0040059. |
[34] |
隋心, 张荣涛, 钟海秀, 等. 利用高通量测序对三江平原小叶章湿地土壤细菌多样性的研究[J]. 土壤, 2015, 47(5): 919 − 925.
SUI Xin, ZHANG Rongtao, ZHONG Haixiu, et al. Study on bacterial diversity of Deyeuxia angustifolia wetland by application of high-throughput sequencing technology in Sanjiang Plain [J]. Soils, 2015, 47(5): 919 − 925. |
[35] |
GILBERT B, FRENZEL P. Rice roots and CH4 oxidation: the activity of bacteria, their distribution and the microenvironment [J]. Soil Biology and Biochemistry, 1998, 30(14): 1903 − 1916. |
[36] |
任玉连, 范方喜, 彭淑娴, 等. 纳帕海沼泽化草甸不同季节土壤真菌群落结构与理化性质的关系[J]. 中国农学通报, 2018, 34(29): 69 − 75.
REN Yulian, FAN Fangxi, PENG Shuxian, et al. Relationship between soil fungal community structure and physical and chemical properties of different seasons swamp meadow in Napahai wetland [J]. Chinese Agricultural Science Bulletin, 2018, 34(29): 69 − 75. |
[37] |
ŽIFČÁKOVÁ L, VĚTROVSKÝ T, LOMBARD V, et al. Feed in summer, rest in winter: microbial carbon utilization in forest topsoil [J/OL]. Microbiome, 2017, 5(1): 122[2023-04-25]. doi: 10.1186/s40168-017-0340-0. |
[38] |
SPEED J D M, AUSTRHEIM G, MYSTERUD A. The response of plant diversity to grazing varies along an elevational gradient [J]. Journal of Ecology, 2013, 101(5): 1225 − 1236. |
[39] |
张琼琼, 黄兴如, 郭逍宇. 基于T-RFLP技术的不同水位梯度植物根际细菌群落多样性特征分析[J]. 生态学报, 2016, 36(14): 4518 − 4530.
ZHANG Qiongqiong, HUANG Xingru, GUO Xiaoyu. Analysis of the characteristics of rhizosphere bacterial diversity from plants with different water level gradients based on T-RFLP [J]. Acta Ecologica Sinica, 2016, 36(14): 4518 − 4530. |
[40] |
侯贻菊, 吴晓悦, 张喜, 等. 林木根际土壤研究进展[J]. 贵州林业科技, 2019, 47(4): 39 − 45.
HOU Yiju, WU Xiaoyue, ZHANG Xi, et al. The research progress of rhizosphere soil of forest trees [J]. Guizhou Forestry Science and Technology, 2019, 47(4): 39 − 45. |
[41] |
牛佳, 周小奇, 蒋娜, 等. 若尔盖高寒湿地干湿土壤条件下微生物群落结构特征[J]. 生态学报, 2011, 31(2): 474 − 482.
NIU Jia, ZHOU Xiaoqi, JIANG Na, et al. Characteristics of soilmicrobial communities under dry and wet condition in Zoige alpine wetland [J]. Acta Ecologica Sinica, 2011, 31(2): 474 − 482. |
[42] |
赵兴鸽, 张世挺, 牛克昌. 高寒草甸植物群落功能属性与土壤细菌多样性关系[J]. 中国科学: 生命科学, 2020, 50(1): 70 − 80.
ZHAO Xingge, ZHANG Shiting, NIU Kechang. Association of soil bacterial diversity with plant community functional attributes in alpine meadows [J]. Scientia Sinica Vitae, 2020, 50(1): 70 − 80. |
[43] |
巩涛, 孙召华, 张志龙, 等. 季节变化与植被类型对河南沿黄湿地微生物群落的影响[J]. 河南科学, 2022, 40(3): 504 − 509.
GONG Tao, SUN Zhaohua, ZHANG Zhilong, et al. Effects of seasonal variations and vegetation types on microbial communities of wetland along the Yellow River in Henan [J]. Henan Science, 2022, 40(3): 504 − 509. |
[44] |
禹飞, 梁俊峰, 史静龙, 等. 林冠受损对小坑林场土壤固碳微生物群落结构的影响[J]. 微生物学通报, 2017, 44(10): 2297 − 2306.
YU Fei, LIANG Junfeng, SHI Jinglong, et al. Effects of canopy damage on soil CO2 fixation bacterial community structure in Xiaokeng Forest Farm [J]. Microbiology China, 2017, 44(10): 2297 − 2306. |
[45] |
李杰. 碳氮比调控对虾蟹混养系统细菌群落结构及其功能多样性影响的研究[D]. 青岛: 中国海洋大学, 2015.
LI Jie. Studies on the Effects of Carbon Regulation on the Structure and Functions of Bacterial Community in the Polyculture System of Portunus trituberculatus and Litopenaeus vannamei [D]. Qingdao: Ocean University of China, 2015. |
[46] |
李振灵, 丁彦礼, 白少元, 等. 潜流人工湿地基质结构与微生物群落特征的相关性[J]. 环境科学, 2017, 38(9): 3713 − 3720.
LI Zhenling, DING Yanli, BAI Shaoyuan, et al. Correlations between substrate structure and microbial community in subsurface flow constructed wetlands [J]. Environmental Science, 2017, 38(9): 3713 − 3720. |
[47] |
唐杰, 徐青锐, 王立明, 等. 若尔盖高原湿地不同退化阶段的土壤细菌群落多样性[J]. 微生物学通报, 2011, 38(5): 677 − 686.
TANG Jie, XU Qingrui, WANG Liming, et al. Soil bacterial community diversity under different stages of degradation in Zoige Wetland [J]. Microbiology China, 2011, 38(5): 677 − 686. |