[1] GUENTHER A, HEWITT C N, ERICKSON D, et al. A global model of natural volatile organic compound emissions [J]. Journal of Geophysical Research, 1995, 100(D5): 8873 − 8892.
[2] DUDAREVA N, KLEMPIEN A, MUHLEMANN J K, et al. Biosynthesis, function and metabolic engineering of plant volatile organic compounds [J]. New Phytologist, 2013, 198(1): 16 − 32.
[3] BAI Jianhua, GUENTHER A B, TURNIPSEED A, et al. Seasonal and interannual variations in whole-ecosystem BVOC emissions from a subtropical plantation in China [J]. Atmospheric Environment, 2017, 161: 176 − 190.
[4] GUENTHER A B, JIANG Xiaoyan, HEALD C, et al. The model of emissions of gases and aerosols from nature version 2.1 (MEGAN 2.1): an extended and updated framework for modeling biogenic emissions [J]. Geoscientific Model Development, 2012, 5(6): 1471 − 1492.
[5] van den BERG M, WENDEL-VOS W, van POPPEL M, et al. Health benefits of green spaces in the living environment: a systematic review of epidemiological studies [J]. Urban Forestry &Urban Greening, 2015, 14(4): 806 − 816.
[6] ANTONELLI M, DONELLI D, BARBIERI G, et al. Forest volatile organic compounds and their effects on human health: a state-of-the-art review [J/OL]. International Journal of Environmental Research and Public Health, 2020, 17(18): 6506[2022-09-30]. doi: 10.3390/ijerph17186506.
[7] 高岩. 北京市绿化树木挥发性有机物释放动态及其对人体健康的影响[D]. 北京: 北京林业大学, 2005.

GAO Yan. Releasing Variation and Effects on Human Health of Volatile Organic Compounds from Landscape Tress in Beijing [D]. Beijing: Beijing Forestry University, 2005.
[8] 代瑶, 郭阿君. 含萜烯类挥发物物质植物在森林康养中的保健作用[J]. 现代园艺, 2021, 44(23): 39 − 44.

DAI Yao, GUO Ajun. Health effects of plants containing terpene volatile substances in forest recreation [J]. Xiandai Horticulture, 2021, 44(23): 39 − 44.
[9] 孙丽娟, 柯闲, 王俊俊, 等. 森林芬多精类成分及其生物活性的研究进展[J]. 中草药, 2021, 52(22): 7032 − 7043.

SUN Lijuan, KE Xian, WANG Junjun, et al. Research progress on constituents and biological activities of phytoncides from forest [J]. Chinese Traditional and Herbal Drugs, 2021, 52(22): 7032 − 7043.
[10] LEE A C K, MAHESWARAN R. The health benefits of urban green spaces: a review of the evidence [J]. Journal of Public Health, 2011, 33(2): 212 − 222.
[11] 李哲, 刘剑君, 韩晓燕, 等. 城市化对慢性非传染性疾病影响的相关研究现状[J]. 中国慢性病预防与控制, 2019, 27(1): 61 − 64, 68.

LI Zhe, LIU Jianjun, HAN Xiaoyan, et al. Current status of research related to the impact of urbanisation on chronic non-communicable diseases [J]. Chinese Journal of Prevention and Control of Chronic Diseases, 2019, 27(1): 61 − 64, 68.
[12] SHIN W S, KIM J J, LIM S S, et al. Paradigm shift on forest utilization: forest service for health promotion in the Republic of Korea [J]. Net Journal of Agricultural Science, 2017, 5(2): 53 − 57.
[13] PAGÈS A B, PEÑUELAS J, CLARÀ J, et al. How should forests be characterized in regard to human health? Evidence from existing literature [J/OL]. International Journal of Environmental Research and Public Health, 2020, 17(3): 1027[2022-09-30]. doi: 10.3390/ijerph17031027.
[14] YUAN Yali, SUN Zhihong, KÄNNASTE A, et al. Isoprenoid and aromatic compound emissions in relation to leaf structure, plant growth form and species ecology in 45 East-Asian urban subtropical woody species [J/OL]. Urban Forestry & Urban Greening, 2020, 53: 126705 [2022-09-30]. doi: 10.1016/j.ufug.2020.126705.
[15] MATSUNAGA S N, SHIMADA K, MASUDA T, et al. Emission of biogenic volatile organic compounds from trees along streets and in urban parks in Tokyo, Japan [J]. Asian Journal of Atmospheric Environment, 2017, 11(1): 29 − 32.
[16] MENEGUZZO F, ALBANESE L, BARTOLINI G, et al. Temporal and spatial variability of volatile organic compounds in the forest atmosphere [J/OL]. International Journal of Environmental Research and Public Health, 2019, 16(24): 4915[2022-09-30]. doi: 10.3390/ijerph16244915.
[17] GENARD-ZIELINSKI A C, BOISSARD C, FERNANDEZ C, et al. Variability of BVOC emissions from a Mediterranean mixed forest in southern France with a focus on Quercus pubescens [J]. Atmospheric Chemistry and Physics, 2015, 15(1): 431 − 446.
[18] CHEN Jungang, BI Huaxin, YU Xinxiao, et al. Influence of physiological and environmental factors on the diurnal variation in emissions of biogenic volatile compounds from Pinus tabuliformis [J]. Journal of Environmental Sciences, 2019, 81: 102 − 118.
[19] MIYAMA T, MORISHITA T, KOMINAMI Y, et al. Increases in biogenic volatile organic compound concentrations observed after rains at six forest sites in non-summer periods [J/OL]. Atmosphere, 2020, 11(12): 1381[2022-09-20]. doi: 10.3390/atmos11121381.
[20] KIM G, PARK S, KWAK D. Is it possible to predict the concentration of natural volatile organic compounds in forest atmosphere? [J]. International Journal of Environmental Research and Public Health, 2020, 17(21): 1 − 12.
[21] MÄKI M, KRASNOV D, HELLÉN H, et al. Stand type affects fluxes of volatile organic compounds from the forest floor in hemiboreal and boreal climates [J]. Plant and Soil, 2019, 441(1): 363 − 381.
[22] 吕嘉欣. 毛竹挥发物对空气负离子及空气微生物的影响[D]. 杭州: 浙江农林大学, 2021.

LÜ Jiaxin. Effect of Phyllostachys edulis on Negative Air Anion and Microorganism [D]. Hangzhou: Zhejiang A&F University, 2021.
[23] 林静, 简毅, 骆宗诗, 等. 5种康养植物芬多精成分及含量研究[J]. 四川林业科技, 2018, 39(6): 13 − 19.

LI Jing, JIAN Yi, LUO Zongshi, et al. A study on chemical components and contents in the phytoncidere from 5 species of forest health plants [J]. Journal of Sichuan Forestry Science and Technology, 2018, 39(6): 13 − 19.
[24] 吴敏. 5种杉科植物不同部位的精气成分[J]. 中南林学院学报, 2006, 26(3): 82 − 86.

WU Min. A study of chemical components in the volatile gas from 5 Taxodiaceae species [J]. Journal of Central South University of Forestry &Technology, 2006, 26(3): 82 − 86.
[25] LIU Song, XING Jia, ZHANG Hongliang, et al. Climate-driven trends of biogenic volatile organic compound emissions and their impacts on summertime ozone and secondary organic aerosol in China in the 2050s [J/OL]. Atmospheric Environment, 2019, 218(11): 117020[2022-09-20]. doi: 10.1016/j.atmosenv.2019.117020.
[26] VALERIE S, LUCHETTA L, TORRES L. Estimating the emission of volatile organic compounds (VOC) from the French forest ecosystem [J]. Atmospheric Environment, 2001, 35(5/6): 1082 − 1091.
[27] LUN Xiaoxiu, LIN Ying, CHAI Fahe, et al. Reviews of emission of biogenic volatile organic compounds (BVOCs) in Asia [J/OL]. Journal of Environmental Sciences, 2020, 95(12): 266 − 277.
[28] WELTER S, BRACHO-NUÑEZ A, MIR C, et al. The diversification of terpene emissions in Mediterranean oaks: lessons from a study of Quercus suber, Quercus canariensis and its hybrid Quercus afares [J]. Tree Physiology, 2012, 32(9): 1082 − 1091.
[29] 黄幸然. 亚热带主要乔木异戊二烯和单萜烯释放对多环境因子的响应[D]. 福州: 福建农林大学, 2020.

HUANG Xingran. Responses of Isoprene and Monoterpene Emissions from Main Subtropical Trees to Multiple Environmental Factors [D]. Fuzhou: Fujian Agriculture and Forestry University, 2020.
[30] OKUMURA M, KOSUGI Y, TANI A. Biogenic volatile organic compound emissions from bamboo species in Japan [J]. Journal of Agricultural Meteorology, 2018, 74(1): 40 − 44.
[31] LERDAU M, LITVAK M, PALMER P, et al. Controls over monoterpene emissions from boreal forest conifers [J]. Tree Physiology, 1997, 17(8/9): 563 − 569.
[32] LEE J, CHO K S, JEON Y, et al. Characteristics and distribution of terpenes in south Korean forests [J/OL]. Journal of Ecology and Environment, 2017, 41(1): 19[2022-09-20]. doi: 10.1186/s41610-017-0038-z.
[33] MENEGUZZO F, ALBANESE L, BARTOLINI G, et al. Temporal and spatial variability of volatile organic compounds in the forest atmosphere [J/OL]. International Journal of Environmental Research and Public Healeh, 2019, 16(24): 4915[2022-09-20]. doi: 10.3390/ijerph16244915.
[34] LORETO F, SCHNITZLER J P. Abiotic stresses and induced BVOCs [J]. Trends in Plant Science, 2009, 15(3): 154 − 166.
[35] LIN Chunya, CHANG Tzucheng, CHEN Yuhan, et al. Monitoring the dynamic emission of biogenic volatile organic compounds from Cryptomeria japonica by enclosure measurement [J]. Atmospheric Environment, 2015, 122: 163 − 170.
[36] HOLZKE C, HOFFMANN T, JAEGER L, et al. Diurnal and seasonal variation of monoterpene and sesquiterpene emissions from scots pine (Pinus sylvestris L.) [J]. Atmospheric Environment, 2006, 40(17): 3174 − 3185.
[37] CHEN Jungang, TANG Jing, YU Xinxiao. Environmental and physiological controls on diurnal and seasonal patterns of biogenic volatile organic compound emissions from five dominant woody species under field conditions [J/OL]. Environmental Pollution, 2020, 259: 113955[2022-09-20]. doi: 10.1016/j.envpol.2020.113955.
[38] MOCHIZUKI T, TAKANASHI S, WADA P, et al. Canopy fluxes of monoterpene, isoprene and isoprene oxidation products in a pine-oak forest [J]. Journal of Agricultural Meteorology, 2020, 76(1): 36 − 43.
[39] TOMA S, BERTMAN S. The atmospheric potential of biogenic volatile organic compounds from needles of white pine (Pinus strobus) in northern Michigan [J]. Atmospheric Chemistry and Physics Discussions, 2011, 12(4): 26849 − 26865.
[40] 陈静, 陈丽华, 余新晓, 等. 夏季油松及侧柏单萜烯变化规律及二次有机气溶胶生成潜势的估算[J]. 水土保持学报, 2016, 30(1): 331 − 336, 344.

CHEN Jing, CHEN Lihua, YU Xinxiao, et al. Variation of monoterpenes emitted from Pinus tabulaeformis and Platycladus orientalis and estimation of the formation potential of secondary organic aerosol in summer [J]. Journal of Soil and Water Conservation, 2016, 30(1): 331 − 336, 344.
[41] LAOTHAWORNKITKUL J, TAYLOR J E, PAUL N D, et al. Biogenic volatile organic compounds in the earth system [J]. New Phytologist, 2009, 183(1): 27 − 51.
[42] 陈俊刚. 森林植物排放挥发性有机物及对二次污染物生成的影响[D]. 北京: 北京林业大学, 2017.

CHEN Jungang. Volatile Organic Compounds Emitted from Forest Plants and its Effects on the Formation of Secondary Pollutants [D]. Beijing: Beijing Forestry University, 2017.
[43] 李莹莹, 李想, 陈建民. 植物释放挥发性有机物(BVOC)向二次有机气溶胶(SOA)转化机制研究[J]. 环境科学, 2011, 32(12): 3588 − 3592.

LI Yingying, LI Xiang, CHEN Jianmin. Study on transformation mechanism of SOA from biogenic VOC under UV-B condition [J]. Environmental Science, 2011, 32(12): 3588 − 3592.
[44] KANAKIDOU M, SEINFELD J H, PANDIS S N, et al. Organic aerosol and global climate modelling: a review [J]. Atmospheric Chemistry and Physics, 2005, 5: 1053 − 1123.
[45] 刘旭辉, 余新晓, 张振明, 等. 林带内PM10、PM2.5污染特征及其与气象条件的关系[J]. 生态学杂志, 2014, 33(7): 1715 − 1721.

LIU Xuhui, YU Xinxiao, ZHANG Zhenming, et al. Pollution characteristics of atmospheric particulates in forest belts and their relationship with meteorological conditions [J]. Chinese Journal of Ecology, 2014, 33(7): 1715 − 1721.
[46] VUORINEN T, NERG A M, VAPAAVUORI E, et al. Emission of volatile organic compounds from two silver birch (Betula pendula Roth) clones grown under ambient and elevated CO2 and different O3 concentrations [J]. Atmospheric Environment, 2005, 39(7): 1185 − 1197.