[1] CHEN Liqing, CHEUNG L S, FENG Liang, et al. Transport of sugars[J]. Annu Rev Biochem, 2015, 84:865-894. doi:  10.1146/annurev-biochem-060614-033904
[2] 马殿荣, 孔德秀, 刘晓亮, 等.杂草稻中胚轴伸长动态及其与籽粒淀粉酶活性和可溶性糖含量的关系[J].中国水稻科学, 2014, 28(1):97-102. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGSK201401014.htm

MA Dianrong, KONG Dexiu, LIU Xiaoliang, et al. Mesocotyl elongation of weedy rice and its relationship with grain amylase activities and soluble sugar contents[J]. Chin J Rice Sci, 2014, 28(1):97-102. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGSK201401014.htm
[3] ZHANG Huiling, HOU Juan, LIU Jun, et al. Amylase analysis in potato starch degradation during cold storage and sprouting[J]. Potato Res. 2014, 57(1):47-58. doi:  10.1007/s11540-014-9252-6
[4] 刘洋, 赵香娜, 岳美琪, 等.甜高粱茎秆不同节间糖分累积与相关酶活性的变化[J].植物遗传资源学报, 2010, 11(2):162-167. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWYC201002010.htm

LIU Yang, ZHAO Xiangna, YUE Meiqi, et al. Sugar metabolism and change of related activities of enzymes in internode of sweet sorghum[J]. J Plant Genetic Res, 2010, 11(2):162-167. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWYC201002010.htm
[5] GRAF A, SCHLERETH A, STITT M, et al. Circadian control of carbohydrate availability for growth in Arabidopsis plants at night[J]. Proc Nat Acad Sci, 2010, 107(20):9458-9463. doi:  10.1073/pnas.0914299107
[6] 袁佳丽, 温国胜, 张明如, 等.毛竹快速生长期的水势变化特征[J].浙江农林大学学报, 2015, 32(5):722-728. http://zlxb.zafu.edu.cn/CN/abstract/abstract1113.shtml

YUAN Jiali, WEN Guosheng, ZHANG Mingru, et al. Water potential with Phyllostachys edulis in its fast-growth periods[J]. J Zhejiang A & F Univ, 2015, 32(5):722-728. http://zlxb.zafu.edu.cn/CN/abstract/abstract1113.shtml
[7] 丁雨龙, LIESE W.竹节解剖构造的研究[J].竹子研究汇刊, 1995, 14(1):24-32. http://www.cnki.com.cn/Article/CJFDTOTAL-ZZYJ199501003.htm

DING Yulong, LIESE W. On the nodal structure of bamboo[J]. J Bamboo Res, 1995, 14(1):24-32. http://www.cnki.com.cn/Article/CJFDTOTAL-ZZYJ199501003.htm
[8] 刘琳, 王玉魁, 王星星, 等.毛竹出笋后快速生长期茎秆色素含量与反射光谱的相关性[J].生态学报, 2013, 33(9):2703-2711. doi:  10.5846/stxb

LIU Lin, WANG Yukui, WANG Xingxing, et al. Correlation between pigment content and reflectance spectrum of Phyllostachys pubescens stems during its rapid growth stage[J]. Acta Ecol Sin, 2013, 33(9):2703-2711. doi:  10.5846/stxb
[9] 王星星, 刘琳, 张洁, 等.毛竹出笋后快速生长期内茎秆中光合色素和光合酶活性的变化[J].植物生态学报, 2012, 36(5):456-462. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB201205013.htm

WANG Xingxing, LIU Lin, ZHANG Jie, et al. Changes of photosynthetic pigment and photosynthetic enzyme activity in stems of Phyllostachys pubescens during rapid growth stage after shooting[J]. Chin J Plant Ecol, 2012, 36(5):456-462. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB201205013.htm
[10] 方楷, 杨光耀, 杨清培, 等.毛竹成竹过程中内源激素动态变化[J].江西农业大学学报, 2011, 33(6):1107-1111. http://www.cnki.com.cn/Article/CJFDTOTAL-JXND201106015.htm

FANG Kai, YANG Guangyao, YANG Qingpei, et al. Dynamic changes of endogenesis hormone in bamboo formation course (Phyllostachys edulis)[J]. Acta Agric Univ Jiangxi, 2011, 33(6):1107-1111. http://www.cnki.com.cn/Article/CJFDTOTAL-JXND201106015.htm
[11] CUI Kai, HE Caiyun, ZHANG Jianguo, et al. Temporal and spatial profiling of internode elongation-associated protein expression in rapidly growing culms of bamboo[J]. J Proteome Res, 2012, 11(4):2492-2507. doi:  10.1021/pr2011878
[12] HE Caiyun, CUI Kai, ZHANG Jianguo, et al. Next-generation sequencing-based mRNA and microRNA expression profiling analysis revealed pathways involved in the rapid growth of developing culms in moso bamboo[J]. BMC Plant Biol, 2013, 13(1):119. doi: 10.1186/1471-2229-13-119.
[13] PENG Zhenhua, LU Ying, LI Lubin, et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla)[J]. Nature Genetics, 2013, 45(4):456-461. doi:  10.1038/ng.2569
[14] 刘骏, 杨清培, 杨光耀, 等.厚壁毛竹非结构性碳水化合物分配格局[J].江西农业大学学报, 2011, 33(5):924-928. http://www.cnki.com.cn/Article/CJFDTOTAL-JXND201105018.htm

LIU Jun, YANG Qingpei, YANG Guangyao, et al. Allocation pattern of non-structural carbohydrates of Phyllostachys edulis 'Pachyloen'[J]. Acta Agric Univ Jiangxi, 2011, 33(5):924-928. http://www.cnki.com.cn/Article/CJFDTOTAL-JXND201105018.htm
[15] 郑进烜, 董文渊, 陈冲, 等.海子坪天然毛竹种群生长规律研究[J].竹子研究汇刊, 2008, 27(2):32-37. http://www.cnki.com.cn/Article/CJFDTOTAL-ZZYJ200802008.htm

ZHENG Jinxuan, DONG Wenyuan, CHEN Chong, et al. Studies on the growth and rhythm of natural moso bamboo population in Haiziping[J]. J Bamboo Res, 2008, 27(2):32-37. http://www.cnki.com.cn/Article/CJFDTOTAL-ZZYJ200802008.htm
[16] TIFFANY T O, JANSEN J M, BURTIS C A, et al. Enzymatic kinetic rate and end-point analyses of substrate, by use of a GeMSAEC fast analyzer[J]. Clin Chem, 1972, 18(8):829-840. http://clinchem.aaccjnls.org/content/clinchem/18/8/829.full.pdf
[17] BERNFELD P. Amylases, α and β[J]. Meth Enzymol, 1955, 1:149-158. doi:  10.1016/0076-6879(55)01021-5
[18] CHANTUMA P, LACOINTE A, KASEMSAP P, et al. Carbohydrate storage in wood and bark of rubber trees submitted to different level of C demand induced by latex tapping[J]. Tree Physiol, 2009, 29(8):1021-1031. doi:  10.1093/treephys/tpp043
[19] MYERS J A, KITAJIMA K. Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest[J]. J Ecol, 2007, 95(2):383-395. doi:  10.1111/jec.2007.95.issue-2
[20] LASTDRAGER J, HANSON J, SMEEKENS S. Sugar signals and the control of plant growth and development[J]. J Exp Bot, 2014, 65(3):799-807. doi:  10.1093/jxb/ert474
[21] WANG Yan, YU Bingjie, ZHAO Jinping, et al. Autophagy contributes to leaf starch degradation[J]. Plant Cell, 2013, 25(4):1383-1399. doi:  10.1105/tpc.112.108993
[22] STITT M, ZEEMAN S C. Starch turnover:pathways, regulation and role in growth[J]. Curr Opin Plant Biol, 2012, 15(3):282-292. doi:  10.1016/j.pbi.2012.03.016
[23] MATSUDA R, OZAWA N, FUJIWARA K. Leaf photosynthesis, plant growth, and carbohydrate accumulation of tomato under different photoperiods and diurnal temperature differences[J]. Sci Hortic, 2014, 170(3):150-158. http://www.doc88.com/p-9592119962521.html
[24] MARTINS M C, HEJAZI M, FETTKE J, et al. Feedback inhibition of starch degradation in Arabidopsis leaves mediated by trehalose 6-phosphate[J]. Plant Physiol, 2013, 163(3):1142-1163. doi:  10.1104/pp.113.226787
[25] LIU D D, CHAO W M, TURGEON R. Transport of sucrose, not hexose, in the phloem[J]. J Exp Bot, 2012, 63(11):4315-4320. doi:  10.1093/jxb/ers127
[26] 张懿, 张大兵, 刘曼.植物体内糖分子的长距离运输及其分子机制[J].植物学报, 2015, 50(1):107-121. doi:  10.3724/SP.J.1259.2015.00107

ZHANG Yi, ZHANG Dabing, LIU Man. The molecular mechanism of long-distance sugar transport in plants[J]. Chin Bull Bot, 2015, 50(1):107-121. doi:  10.3724/SP.J.1259.2015.00107
[27] 张春玲. 毛竹笋-竹生长发育过程系统分析与生长素相关基因研究[D]. 北京: 中国林业科学研究院, 2014.

ZHANG Chunling. The Comprehensive Analysis of Shoot-Culm and Study of Auxin-related Genes of Phyllostachys edulis[D]. Beijing:Chinese Academy of Forestry, 2014.
[28] 董丽娜. 毛竹秆茎高生长的发育解剖研究[D]. 南京: 南京林业大学, 2007.

DONG Lina. Studies on Developmental Anatomy of Elongated Growth about Bamboo Culms[D]. Nanijing:Nanjing Forestry University, 2007.
[29] 柴静, 张会, 姚丽丽, 等.蔗糖合酶在植物生长发育中的作用研究[J].生命科学, 2012, 24(1):81-88. http://www.cnki.com.cn/Article/CJFDTOTAL-SMKX201201016.htm

CHAI Jing, ZHANG Hui, YAO Lili, et al. The function of sucrose synthase in plant growth and development[J]. Chin Bull Life Sci, 2012, 24(1):81-88. http://www.cnki.com.cn/Article/CJFDTOTAL-SMKX201201016.htm
[30] 刘波. 毛竹发育过程中细胞壁形成的研究[D]. 北京: 中国林业科学研究院, 2008.

LIU Bo. Formation of Cell Wall in Developmental Culms of Phyllostachys pubescens[D]. Beijing:Chinese Academy of Forestry, 2008.