[1] 蔡晓锋, 胡体旭, 叶杰, 等. 植物盐胁迫抗性的分子机制研究进展[J]. 华中农业大学学报, 2015, 34(3): 134 − 141.

CAI Xiaofeng, HU Tixu, YE Jie, et al. Molecular mechanisms of salinity tolerance in plants [J]. J Huazhong Agric Univ, 2015, 34(3): 134 − 141.
[2] SHAH A N, TANVEER M, ABBAS A, et al. Targeting salt stress coping mechanisms for stress tolerance in Brassica: a research perspective [J]. Plant Physiol Biochem, 2021, 158: 53 − 64.
[3] YANF Yongqing, YOU Yan. Unraveling salt stress signaling in plants [J]. Integrative Plant Biol, 2018, 60(9): 796 − 804.
[4] JOSE A M, MARIA O, AGUSTINA B V, et al. Plant responses to salt stress: adaptive mechanisms[J/OL]. Agronomy, 2017, 7(1): 18[2022-05-18]. doi: 10.3390/agronomy7010018.
[5] MOHAMMAD A A, NISHA S T, TITTAL M, et al. Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions [J]. Physiol Mol Biol Plants, 2017, 23(1): 731 − 744.
[6] ZHANG Huilong, CHEN Deng, YAO Jun, et al. Populus euphratica JRL mediates ABA response, ionic and ROS homeostasis in Arabidopsis under salt stress [J/OL]. Mol Sci, 2019, 20(4): 815[2022-05-20]. doi: 10.3390/ijms20040815.
[7] LI Lihong, YI Huilan. Effect of sulfur dioxide on ROS production, gene expression and antioxidant enzyme activity in Arabidopsis plants [J]. Plant Physiol Biochem, 2012, 58: 46 − 53.
[8] SU Peisen, YAN Jun, LI Wen, et al. A member of wheat class Ⅲ peroxidase gene family, TaPRX-2A, enhanced the tolerance of salt stress[J/OL]. BMC Plant Biol, 2020, 20(1): 392[2022-05-21]. doi: 10.1186/s12870-020-02602-1.
[9] HÄFFNER E, KONIETZZKI S, DIIEDERICHSEN E. Keeping control: the role of senescence and development in plant pathogenesis and defense [J]. Plants, 2015, 4(3): 449 − 488.
[10] MORITA S, KAMINAKA H, TAKEHIRO M, et al. Induction of rice cytosolic ascorbate peroxidase mRNA by oxidative stress; the involvement of hydrogen peroxide in oxidative stress signalling [J]. Plant Cell Physiol, 1999, 40(4): 417 − 422.
[11] WANG Yu, WANG Qianqian, ZHAO Yang, et al. Systematic analysis of maize class Ⅲ peroxidase gene family reveals a conserved subfamily involved in abiotic stress response [J]. Gene, 2015, 566(1): 95 − 108.
[12] ALMAGRO L, GOMEZ ROS LV, BELCHI-NAVARRO S, et al. Class Ⅲ peroxidases in plant defence reactions [J]. J Exp Bot, 2009, 60(2): 377 − 390.
[13] THAKUR A K, KUMAR P, PARMAR N, et al. Achievements and prospects of genetic engineering in poplar: a review [J]. New For, 2021, 52(2): 889 − 920.
[14] 江成. 杨树钙离子依赖核酸酶在木质部分化中的作用机制研究[D]. 北京: 中国林业科学研究院, 2018.

JIANG Cheng. The Role of Ca+ Dependent DNase During the Xylem Differentiation in Poplar[D]. Beijing: Chinese Academy of Forestry, 2018.
[15] 姚俊广, 耿娅, 刘依静, 等. S-腺苷甲硫氨酸脱羧酶基因对银腺杨84K抗旱性的影响[J]. 林业科学, 2022, 58(2): 125 − 132.

YAO Junguang, GENG Ya, LIU Yijing, et al. Effects of S-adenosylmethionine decarboxylase gene on drought tolerance of Populus alba × P. glandulosa ‘84K’ [J]. Sci Silv Sin, 2022, 58(2): 125 − 132.
[16] GANGULY D R, CRISP P A, EICHTEN S R, et al. The Arabidopsis DNA methylome is stable under transgenerational drought stress [J]. Plant Physiol, 2017, 175(4): 889 − 920.
[17] MARCIN N, MARIA S. The relationship between the antioxidant system and proline metabolism in the leaves of cucumber plants acclimated to salt stress[J/OL]. Cells, 2021, 10(3): 609[2022-05-15]. doi: 10.3390/cells10030609.
[18] 鲁倩君, 刘迎, 赵宝龙, 等. 葡萄砧木耐盐碱性研究进展[J]. 中外葡萄与葡萄酒, 2022(4): 75 − 80.

LU Qianjun, LIU Ying, ZHAO Baolong, et al. Research progress on salt-alkaline tolerace of grape rootstock [J]. Sino-Overseas Grapevine Wine, 2022(4): 75 − 80.
[19] MEHARI T G, HOU Y, XU Y, et al. Overexpression of cotton GhNAC072 gene enhances drought and salt stress tolerance in transgenic Arabidopsis [J]. BMC Genomics, 2022, 23(1): 64 − 69.
[20] 黄婷, 麻冬梅, 王文静, 等. 2种紫花苜蓿耐盐生理特性的初步研究[J]. 水土保持学报, 2020, 34(2): 216 − 221.

HUANG Ting, MA Dongmei, WANG Wenjing, et al. Preliminary study on physiological characteristics of salt tolerance of two genotypes of alfalfa [J]. J Soil Water Conserv, 2020, 34(2): 216 − 221.
[21] 董亚茹, 聂玉霞, 李云芝, 等. 瞬时过表达MnERF2基因对桑树耐盐性的影响[J]. 山东农业科学, 2022, 54(4): 9 − 16.

DONG Yaru, NIE Yuxia, LI Yunzhi, et al. Effects of MNERF2 gene on salt tolerance in transient overexpression mulberry [J]. Shandong Agric Sci, 2022, 54(4): 9 − 16.
[22] 陈奋奇, 方鹏, 白明兴, 等. 外源脯氨酸缓解玉米幼苗盐胁迫的效应[J]. 草业科学, 2022, 39(4): 747 − 755.

CHEN Fenqi, FANG Peng, BAI Mingxing, et al. Mitigation of salt stress in maize seedlings by exogenous proline application [J]. Pratacult Sci, 2022, 39(4): 747 − 755.
[23] 张涛, 马肖静, 朱新红, 等. NaCl胁迫对不同耐盐性辣椒幼苗生理生化指标的影响[J]. 山东农业科学, 2021, 53(12): 38 − 43.

ZHANG Tao, MA Xiaojing, ZHU Xinhong, et al. Effects of NaCl stress on physiological and biochemical indexes of Capsicum annuum L. seedlings with different salt tolerance [J]. Shandong Agric Sci, 2021, 53(12): 38 − 43.