[1] |
RAVICHANDRAN K S, LORENZ U. Engulfment of apoptotic cells:signals for a good meal[J]. Nat Rev Immunol, 2007, 7(12):964-974. |
[2] |
FLANNAGAN R S, COSIO G, GRINSTEIN S. Antimicrobial mechanisms of phagocytes and bacterial evasion strategies[J]. Nat Rev Microbiol, 2009, 7(5):355-366. |
[3] |
NIZET V. Bacteria and phagocytes:mortal enemies[J]. J Innate Immun, 2010, 2(6):505-507. |
[4] |
STUART L M, EZEKOWITZ R A. Phagocytosis and comparative innate immunity:learning on the fly[J]. Nat Rev Immunol, 2008, 8(2):131-141. |
[5] |
KINCHEN J M, RAVICHANDRAN K S. Phagosome maturation:going through the acid test[J]. Nat Rev Mol Cell Biol, 2008, 9(10):781-795. |
[6] |
ELWELL C, ENGEL J N. Drosophila melanogaster S2 cells:a model system to study Chlamydia interaction with host cells[J]. Cell Microbiol, 2005, 7(5):725-739. |
[7] |
CHERRY S. Genomic RNAi screening in Drosophila S2 cells:what have we learned about host-pathogen interactions?[J]. Curr Opin Microbiol, 2008, 11(3):262-270. |
[8] |
CHENG L W, PORTNOY D A. Drosophila S2 cells:an alternative infection model for Listeria monocytogenes[J]. Cell Microbiol, 2003, 5(12):875-885. |
[9] |
CHENG L W, VIALA J P M, STUURMAN N, et al. Use of RNA interference in Drosophila S2 cells to identify host pathways controlling compartmentalization of an intracellular pathogen[J]. Proc Natl Acad Sci, 2005, 102(38):13646-13651. |
[10] |
LUCE-FEDROW A, von OHLEN T, BOYLE D, et al. Use of Drosophila S2 cells as a model for studying Ehrlichia chaffeensis infections[J]. Appl Environ Microbiol, 2008, 74(6):1886-1891. |
[11] |
STROSCHEIN-STEVENSON S L, FOLEY E, O'FARRELL P H, et al. Identification of Drosophila gene products required for phagocytosis of Candida albicans[J]. PLoS Biol, 2006, 4(1):e4. doi:10.1371/journal.pbio.0040004. |
[12] |
LOHSE M B, JOHNSON A D. Differential phagocytosis of white versus opaque Candida albicans by Drosophila and mouse phagocytes[J]. PLoS One, 2008, 3(1):e1473. doi:10.1371/journal.pone.0001473. |
[13] |
GARVER L S, WU Junlin, WU L P. The peptidoglycan recognition protein PGRP-SC1a is essential for Toll signaling and phagocytosis of Staphylococcus aureus in Drosophila[J]. Proc Natl Acad Sci USA, 2006, 103(3):660-665. |
[14] |
HASHIMOTO Y, TABUCHI Y, SAKURAI K, et al. Identification of lipoteichoic acid as a ligand for draper in the phagocytosis of Staphylococcus aureus by Drosophila hemocytes[J]. J Immunol, 2009, 183(11):7451-7460. |
[15] |
SENDI P, PROCTOR R A. Staphylococcus aureus as an intracellular pathogen:the role of small colony variants[J]. Trends Microbiol, 2009, 17(2):54-58. |
[16] |
KUBICA M, GUZIK K, KOZIEL J, et al. A potential new pathway for Staphylococcus aureus dissemination:the silent survival of S. aureus phagocytosed by human monocyte-derived macrophages[J]. PLoS One, 2008, 3(1):e1409. doi:10.1371/journal. pone 0001409. |
[17] |
NEEDHAM A J, KIBART M, CROSSLEY H, et al. Drosophila melanogaster as a model host for Staphylococcus aureus infection[J]. Microbiol, 2004, 150(7):2347-2355. |
[18] |
ZHU Fei, ZHANG Xiaobo. The Wnt signaling pathway is involved in the regulation of phagocytosis of virus in Drosophila[J]. Sci Rep, 2013, 3(6):2069-2078. |
[19] |
HOFFMANN J A, REICHHART J M. Drosophila innate imunity:an evolutionary perspective[J]. Nat Immunol, 2002, 3(2):121-126. |
[20] |
HOFFMANN J A. The immune response of Drosophila[J]. Nature, 2003, 426(6962):33-38. |
[21] |
LOWY F D. Is Staphylococcus aureus an intracellular pathogen?[J]. Trends Microbiol, 2000, 8(8):341-343. |
[22] |
GARZONI C, KELLEY W L. Staphylococcus aureus:new evidence for intracellular persistence[J]. Trends Microbiol, 2009, 17(2):59-65. |
[23] |
CLEMENT S, VAUDAUX P, FRANCOIS P, et al. Evidence of an intracellular reservoir in the nasal mucosa of patients with recurrent Staphylococcus aureus rhinosinusitis[J]. J Infect Dis, 2005, 192(6):1023-1028. |
[24] |
MERINO N, TOLEDO-ARANA A, VERGARA-IRIGARAY M, et al. Protein A-mediated multicellular behavior in Staphylococcus aureus[J]. J Bacteriol, 2009, 191(3):832-843. |
[25] |
THURLOW L R, HANKE M L, FRITZ T, et al. Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo[J]. J Immunol, 2011, 186(11):6585-6596. |
[26] |
HIGGINS J, LOUGHMAN A, van KESSEL K P, et al. Clumping factor A of Staphylococcus aureus inhibits phagocytosis by human polymorphonuclear leucocytes[J]. FEMS Microbiol Lett, 2006, 258(2):290-296. |
[27] |
BERGER S B, ROMERO X, MA Chunyan, et al. SLAM is a microbial sensor that regulates bacterial phagosome functions in macrophages[J]. Nat Immunol, 2010, 11(10):920-927. |
[28] |
de GREGORIO E, SPELLMAN P T, TZOU P, et al. The Toll and Imd pathways are the major regulators of the immune response in Drosophila[J]. EMBO J, 2002, 21(11):2568-2579. |
[29] |
RUTSCHMANN S, KILINC A, FERRANDON D. Cutting edge:the Toll pathway is required for resistance to gram-positive bacterial infections in Drosophila[J]. J Immunol, 2002, 168(4):1542-1546. |
[30] |
DIMARCQ J L, HOFFMANN D, MEISTER M, et al. Characterization and transcriptional profiles of a Drosophila gene encoding an insect defensin[J]. Eur J Biochem, 1994, 221(1):201-209. |
[31] |
COHEN L, MORAN Y, SHARON A, et al. Drosomycin, an innate immunity peptide of Drosophila melanogaster, interacts with the fly voltage-gated sodium channel[J]. J Biol Chem, 2009, 284(35):23558-23563. |
[32] |
ZHANG Z T, ZHU S Y. Drosomycin, an essential component of antifungal defence in Drosophila[J]. Insect Mol Biol, 2009, 18(5):549-556. |
[33] |
LEMAITRE B, NICOLAS E, MICHAUT L, et al. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults[J]. Cell, 1996, 86:973-983. |
[34] |
RUTSCHMANN S, JUNG A C, HETRU C, et al. The Rel protein DIF mediates the antifungal, but not the antibacterial, response in Drosophila[J]. Immunity, 2000, 12(5):569-580. |
[35] |
MENG Xiangjun, KHANUJA B S, IP Y T. Toll receptor-mediated Drosophila immune response requires Dif, an NF-кB factor[J]. Genes Dev, 1999, 13(7):792-797. |
[36] |
TZOU P, REICHHART J M, LEMAITRE B. Constitutive expression of a single antimicrobial peptide can restore wild-type resistance to infection in immunodeficient Drosophila mutants[J]. Proc Nat Acad Sci, 2002, 99(4):2152-2157. |
[37] |
BAYLES K W, WESSON C A, LIOU L E, et al. Intracellular Staphylococcus aureus escapes the endosome and induces apoptosis in epithelial cells[J]. Infect Immun, 1998, 66(1):336-342. |
[38] |
GIESE B, GLOWINSKI F, PAPROTKA K, et al. Expression of δ-toxin by Staphylococcus aureus mediates escape from phago-endosomes of human epithelial and endothelial cells in the presence of β-toxin[J]. Cell Microbiol, 2011, 13(2):316-329. |