[1] CHANG C I. Hyperspectral Imaging: Signal Processing Algorithm Design and Analysis [M]. Baltimore: University of Maryland, 2009.
[2] 耿修瑞. 高光谱遥感图像目标探测与分类技术研究[D]. 北京: 中国科学院, 2005.

GENG Xiurui. Target Detection and Classification for Hyperspectral Imagery [D]. Beijing: Chinese Academy of Sciences, 2005.
[3] BAJWA S G, BAICSY P, GROVES P, et al. Hyperspectral image data mining for band selection in agricultural applications [J]. Transac Am Soc Agric Eng, 2004, 47(3): 895-907.
[4] ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding [J]. Science, 2000, 290(5500): 2323-2326.
[5] 白杨, 赵银娣, 韩天庆.一种改进的K2DPCA高光谱遥感图像降维方法[J].测绘科学, 2014, 39(7): 126-130.

BAI Yang, ZHAO Yindi, HAN Tianqing. Hyperspectral remote sensing dimensional reduction based on improved kernel two-dimension principal component analysis [J]. Sci Surv Map, 2014, 39(7): 126-130.
[6] 杜博, 张乐飞, 张良培, 等.高光谱图像降维的判别流形学习方法[J].光子学报, 2013, 42(3): 320-325.

DU Bo, ZHANG Lefei, ZHANG Liangpei, et al. Discriminant manifold learning approach for hyperspectral image dimension reduction [J]. Acta Photonica Sin, 2013, 42(3): 320-325.
[7] 刘春红, 赵春晖, 张凌雁.一种新的高光谱遥感图像降维方法[J].中国图象图形学报, 2005, 10(2): 218-222.

LIU Chunhong, ZHAO Chunhui, ZHANG Lingyan. A new method of hyperspectral remote sensing image dimensional reduction [J]. J Image Graph, 2005, 10(2): 218-222.
[8] 姜小光, 唐伶俐, 王长耀, 等.高光谱数据的光谱信息特点及面向对象的特征参数选择:以北京顺义区为例[J].遥感技术与应用, 2002, 17(2): 59-65.

JIANG Xiaoguang, TANG Lingli, WANG Changyao, et al. Spectral characteristics and feature selection of hyperspectral remote sensing data: taking shunyi region of Beijing as a study area [J]. Remote Sens Technol Appl, 2002, 17(2): 59-65.
[9] CHAVEZ B P S, BERLIN G L, SOWERS L B. Statistical method for selection Landsat MSS ratios [J]. J Appl Photogr Eng, 1984, 8(1): 23-30.
[10] 秦方普, 张爱武, 王书民, 等.基于谱聚类与类间可分性因子的高光谱波段选择[J].光谱学与光谱分析, 2015, 35(5): 1357-1364.

QIN Fangpu, ZHANG Aiwu, WANG Shumin, et al. Hyperspectral band selection based on spectral clustering and inter-class separability factor [J]. Spectrosc Spectr Anal, 2015, 35(5): 1357-1364.
[11] CHEPUSHTANOVA S, GITTINS C, KIRBY M. Band selection in hyperspectral imagery using sparse support vector machines [C]//Proceedings of the SPIE, 2014, 9800: 90881F-15.
[12] 宋欠欠, 李轶群, 侯艳, 等.随机森林的变量捕获方法在高维数据变量筛选中的应用[J].中国卫生统计, 2015, 32(1): 49-53.

SONG Qianqian, LI Yiqun, HOU Yan, et al. The application of a random forest-based variable hunting method to variable selection in high-dimensional data [J]. Chin J Health Stat, 2015, 32(1): 49-53.
[13] GEORGE R, PADALIA H, KUSHWAHA S P S. Forest tree species discrimination in western Himalaya using EO-1 Hyperion [J]. Int J Appl Earth Observ Geoinform, 2014, 28(5): 140-149.
[14] 卓莉, 郑璟, 王芳, 等.基于GA-SVM封装算法的高光谱数据特征选择[J].地理研究, 2008, 27(3): 493-501, 726.

ZHUO Li, ZHENG Jing, WANG Fang, et al. A genetic algorithm based wrapper feature selection method for classification of hyper spectral data using support vector maching [J]. Geogr Res, 2008, 27(3): 493-501, 726.
[15] CHANG Cheinl, DU Qian. Estimation of number of spectrally distinct signal sources in hyperspectral imagery [J]. IEEE Trans Geosci Remote Sens, 2004, 42(3): 608-619.
[16] GREEN P E, CARROLL J D. Analyzing Multivariate Data [M]. Hinsdale: Dryden Press, 1978.
[17] BREIMAN L. Random forest [J]. Mach Learn, 2001, 45(1): 5-32.
[18] WU Xiaoyan, WU Zhenyu, LI Kang. Identification of differential gene expression for microarray data using recursive random forest [J]. Chin Med J, 2008, 121(24): 2492-2496.
[19] CORTES C, VAPNIK V N. Support vector networks [J]. Mach Learn, 1995, 20(2): 273-297.
[20] VAPNIK V N. 统计学习理论的本质[M]. 张学工, 译. 北京: 清华大学出版社, 2000.