[1] |
邓小蕾. 果园信息获取现代传感方法及装置研究[D]. 北京: 中国农业大学, 2014.
DENG Xiaolei. Advanced Sening Method and Apparatus for Orchard Information Collection[D]. Beijing:China Agricultural University, 2014. |
[2] |
MASELLI F, CHIESI M, BRILLI L, et al. Simulation of olive fruit yield in tuscany through the integration of remote sensing and ground data[J]. Ecol Model, 2012, 244(1745):1-12. |
[3] |
PEÑA M A, BRENNING A. Assessing fruit-tree crop classification from landsat-8 time series for the Maipo valley, Chile[J]. Remote Sens Environ, 2015, 171(10):234-244. |
[4] |
STRUTHERS R, IVANOVA A, TITS L, et al. Thermal infrared imaging of the temporal variability in stomatal conductance for fruit trees[J]. Int J Appl Earth Obs Geoinf, 2015, 39(2):9-17. |
[5] |
IMMITZER M, VUOLO F, ATZBERGER C. First experience with sentinel-2 data for crop and tree species classifications in Central Europe[J]. Remote Sens, 2016, 8(3):166. doi:10.3390/rs8030166. |
[6] |
LIU Xiaolong, BO Yanchen. Object-based crop species classification based on the combination of airborne hyperspectral images and LiDAR data[J]. Remote Sens, 2015, 7(1):922-950. doi:10.3390/rs70100922. |
[7] |
邢东兴, 常庆瑞.基于花期果树冠层光谱反射率的果树树种辨识研究[J].红外与毫米波学报, 2009, 28(3):207-211.
XING Dongxing, CHANG Qingrui. Identification of species of fruit trees based on the spectral reflectance of canopies of fruit trees during flowering period[J]. J Infrared Millim Waves, 2009, 28(3):207-211. |
[8] |
朱西存, 赵庚星, 王凌, 等.基于高光谱的苹果花氮素含量预测模型研究[J].光谱学与光谱分析, 2010, 30(2):416-420.
ZHU Xicun, ZHAO Gengxing, WANG Ling, et al. Hyperspectrum based prediction model for nitrogen content of apple flowers[J]. Spectrosc Spectral Anal, 2010, 30(2):416-420. |
[9] |
朱西存, 赵庚星, 雷彤, 等.苹果花期的冠层高光谱特征研究[J].光谱学与光谱分析, 2009, 29(10):2708-2712.
ZHU Xicun, ZHAO Gengxing, LEI Tong, et al. Study on hyperspectral characteristics of apple florescence canopy[J]. Spectrosc Spectral Anal, 2009, 29(10):2708-2712. |
[10] |
雷彤, 赵庚星, 朱西存, 等.基于高光谱和数码照相技术的苹果花期光谱特征研究[J].中国农业科学, 2009, 42(7):2481-2490.
LEI Tong, ZHAO Gengxing, ZHU Xicun, et al. Research of apple florescence spectral features based on hyperspectral data and digital photos[J]. Sci Agric Sin, 2009, 42(7):2481-2490. |
[11] |
李子艺, 王振锡, 岳俊, 等.基于BP神经网络的高光谱果树树种识别研究[J].江苏农业科学, 2016, 44(5):410-414.
LI Ziyi, WANG Zhenxi, YUE Jun, et al. Study on recognition of fruit tree with hyperspectral data based on BP neural network[J]. Jiangsu Agric Sci, 2016, 44(5):410-414. |
[12] |
DAS P T, TAJO L, GOSWAMI J. Assessment of citrus crop condition in umling block of Ri-Bhoi district using RS and GIS technique[J]. J Indian Soc Remote Sens, 2009, 37(2):317-324. |
[13] |
郑剑, 周竹, 仲山民, 等.基于近红外光谱与随机青蛙算法的褐变板栗识别[J].浙江农林大学学报, 2016, 33(2):322-329.
ZHENG Jian, ZHOU Zhu, ZHONG Shanmin, et al. Chestnut browning detected with near-infrared spectroscopy and a random-frog algorithm[J]. J Zhejiang A & F Univ, 2016, 33(2):322-329. |
[14] |
刘伟, 赵众, 袁洪福, 等.光谱多元分析校正集和验证集样本分布优选方法研究[J].光谱学与光谱分析, 2014, 34(4):947-951.
LIU Wei, ZHAO Zhong, YUAN Hongfu, et al. An optimal selection method of samples of calibration set and validation set for spectral multivariate analysis[J]. Spectrosc Spectral Anal, 2014, 34(4):947-951. |
[15] |
唐果, 田旷达, 李祖红, 等.近红外光谱结合PLS-DA划分烟叶等级[J].烟草科技, 2013(4):60-62.
TANG Guo, TIAN Kuangda, LI Zuhong, et al. Classification of tobacco grades by near-infrared spectroscopy and PLS-DA[J]. Tobacco Sci Technol, 2013(4):60-62. |
[16] |
唐军, 王青, 童红, 等.薰衣草精油的衰减全反射红外光谱辨别分析[J].光谱学与光谱分析, 2016, 36(3):716-719.
TANG Jun, WANG Qing, TONG Hong, et al. Discriminant analysis of lavender essential oil by attenuated total reflectance infrared spectroscopy[J]. Spectrosc Spectral Anal, 2016, 36(3):716-719. |
[17] |
王茜蒨, 黄志文, 刘凯, 等.基于主成分分析和人工神经网络的激光诱导击穿光谱塑料分类识别方法研究[J].光谱学与光谱分析, 2012, 32(12):3179-3182.
WANG Qianqian, HUANG Zhiwen, LIU Kai, et al. Classification of plastics with laser-induced breakdown spectroscopy based on principal component analysis and artificial neural network model[J]. Spectrosc Spectral Anal, 2012, 32(12):3179-3182. |
[18] |
高浪, 谢康和.人工神经网络在岩土工程中的应用[J].土木工程学报, 2002, 35(4):77-81.
GAO Lang, XIE Kanghe. Application of artificial neural networks to geotechnical engineering[J]. China Civil Eng J, 2002, 35(4):77-81. |
[19] |
成忠, 张立庆, 刘赫扬, 等.连续投影算法及其在小麦近红外光谱波长选择中的应用[J].光谱学与光谱分析, 2010, 30(4):949-952.
CHENG Zhong, ZHANG Liqing, LIU Heyang, et al. Successive projections algorithm and its application to selecting the wheat near-infrared spectral variables[J]. Spectrosc Spectral Anal, 2010, 30(4):949-952. |
[20] |
吴桂芳, 蒋益虹, 王艳艳, 等.基于独立主成分和BP神经网络的干红葡萄酒品种的鉴别[J].光谱学与光谱分析, 2009, 29(5):1268-1271.
WU Guifang, JIANG Yihong, WANG Yanyan, et al. Discrimination of varieties of dry red wines based on independent component analysis and BP neural network[J]. Spectrosc Spectral Anal, 2009, 29(5):1268-1271. |
[21] |
王艳艳, 何勇, 邵咏妮, 等.基于可见-近红外光谱的咖啡品牌鉴别研究[J].光谱学与光谱分析, 2007, 27(4):702-706.
WANG Yanyan, HE Yong, SHAO Yongni, et al. Discrimination among different brands of coffee by using vis-near infrared[J]. Spectrosc Spectral Anal, 2007, 27(4):702-706. |
[22] |
邵咏妮, 何勇, 鲍一丹.基于独立组分分析和BP神经网络的可见/近红外光谱蜂蜜品牌的鉴别[J].光谱学与光谱分析, 2008, 28(3):602-605.
SHAO Yongni, HE Yong, BAO Yidan. Application of visible/near infrared spectroscopy to discriminating honey brands based on independent component analysis and BP neural network[J]. Spectrosc Spectral Anal, 2008, 28(3):602-605. |