[1] 廖永翠, 宋明, 王辉, 等.大白菜中硫代葡萄糖苷的鉴定及含量分析[J].园艺学报, 2011, 38(5): 963-969.

LIAO Yongcui, SONG Ming, WANG Hui, et al. Glucosinolate profile and accumulation in Brassica campestris L. ssp. pekinensis [J]. Acta Hortic Sin, 2011, 38(5): 963-969.
[2] BUSSY A. Note sur la formation de Ⅰ'huile essentielle de moutarde [J]. J Phamac Chim, 1840, 26(39): 815-817.
[3] 祝彪. 外源植物生长调节物质对小白菜硫代葡萄糖苷的影响及相关合成基因表达研究[D]. 杭州: 浙江大学, 2012.

ZHU Biao. Studies on the Effects of Plant Growth Regulators on Glucosinolates and the Expression of Related Genes in Pakchoi [D]. Hangzhou: Zhejiang University, 2012.
[4] 袁高峰, 陈思学, 汪俏梅.芥子油苷及其代谢产物的生物学效应研究与应用[J].核农学报, 2009, 23(4): 664-668.

YUAN Gaofeng, CHEN Sixue, WANG Qiaomei. Biological functions and application of glucosinolates and their degradation products [J]. J Nucl Agric Sci, 2009, 23(4): 664-668.
[5] 刘梦洋, 卢银, 韩文素, 等.大白菜抗小菜蛾突变体硫甙含量及相关基因的表达分析[J].农业生物技术学报, 2015, 23(3): 320-328.

LIU Mengyang, LU Yin, HAN Wensu, et al. Glucosinolate content and expression of related genes in Chinese cabbage (Brassica campestris sub. pekinensis) mutants resistance to diamondback moth (Plutella xylostella L.) [J]. J Agric Biotechnol, 2015, 23(3): 320-328.
[6] LIU Tongjin, ZHANG Xiaohui, YANG Haohui, et al. Aromatic glucosinolate biosynthesis pathway in Barbarea vulgaris and its response to Plutella xylostella infestation [J]. Front Plant Sci, 2016, 7(1): 83. doi: 10.3389/fpls. 2016. 00083.
[7] KOS M, HOUSHYANI B, WIETSMA R, et al. Effects of glucosinolates on a generalist and specialist leaf-chewing herbivore and an associated parasitoid [J]. Phytochemistry, 2012, 77(1): 162-170.
[8] BUXDORF K, YAFFE H, BARDA O, et al. The effects of glucosinolates and their breakdown products on necrotrophic fungi [J]. PLoS One, 2013, 8(8): e70771. doi:10.1371/journal.pone.0070771.
[9] MARTINEZBALL M D, MORENO D A, CARVAJAL M. The physiological importance of glucosinolates on plant response to abiotic stress in Brassica[J]. Int J Mol Sci, 2013, 14(6): 11607-11625.
[10] LIPPMANN D, LEHMANN C, FLORIAN S, et al. Glucosinolates from pak choi and broccoli induce enzymes and inhibit inflammation and colon cancer differently [J]. Food Funct, 2014, 5(6): 1073-1081
[11] DINKOVA-KOSTOVA A T, KOSTOV R V. Glucosinolates and isothiocyanates in health and disease [J]. Trends Mol Med, 2012, 18(6): 337-347.
[12] 程坤, 杨丽梅, 方智远, 等.十字花科植物中主要硫代葡萄糖苷合成与调节基因的研究进展[J].中国蔬菜, 2010(12): 1-6.

CHENG Kun, YANG Limei, FANG Zhiyuan, et al. Research progress on regulation and synthesis genes on glucosinolates biosynthesis in crucifer [J]. China Veg, 2010(12): 1-6.
[13] GRUBB C D, ABEL S. Glucosinolate metabolism and its control [J]. Trends Plant Sci, 2006, 11(2): 89-100.
[14] ZANG Yunxiang, KIM H U, KIM J A, et al. Genome-wide identification of glucosinolate synthesis genes in Brassica rapa [J]. FEBS J, 2009, 276(13): 3559-3574.
[15] 张园园. 油菜和拟南芥中几个硫代葡萄糖苷合成及调控基因的功能分析[D]. 武汉: 华中农业大学, 2015.

ZHANG Yuanyuan. Function Analyses of Several Genes Involved in Biosynthesis and Regulation of Glucosinolate in Brassica napus and Arabidopsis thaliana [D]. Wuhan: Huazhong Agricultural University, 2015.
[16] 吴宇, 高蕾, 曹民杰, 等.植物硫营养代谢、调控与生物学功能[J].植物学通报, 2007, 24(6): 735-761.

WU Yu, GAO Lei, CAO Minjie, et al. Plant sulfur metablism, regulation, and bidogical functions [J]. Chin Bull Bot, 2007, 24(6): 735-761.
[17] SØNDERBY I E, GEUFLORES F, HALKIER B A. Biosynthesis of glucosinolates-gene discovery and beyond [J]. Trends Plant Sci, 2010, 15(5): 283-290.
[18] 段喜华, 唐中华, 郭晓瑞.植物谷胱甘肽的生物合成及其生物学功能[J].植物研究, 2010, 30(1): 98-105.

DUAN Xihua, TANG Zhonghua, GUO Xiaorui. Biosynthesis and function of glutathione in plant [J]. Bull Bot Res, 2010, 30(1): 98-105.
[19] 闫慧芳, 毛培胜, 夏方山.植物抗氧化剂谷胱甘肽研究进展[J].草地学报, 2013, 21(3): 428-434.

YAN Huifang, MAO Peisheng, XIA Fangshan. Research progress in plant antioxidant glutathione (review) [J]. Acta Agrest Sin, 2013, 21(3): 428-434.
[20] 单长卷, 代海芳.外源谷胱甘肽对干旱胁迫下玉米幼苗叶片生理特性的影响[J].灌溉排水学报, 2016, 35(1): 59-62.

SHAN Changjuan, DAI Haifang. Effect of exogenous glutathione on leaf physiological properties of maize seedlings under drought stress [J]. J Irrig Drain, 2016, 35(1): 59-62.
[21] SHANKAR V, THEKKEETTIL V, SHARMA G, et al. Alleviation of heavy metal stress in Spilanthes calva L.(antimalarial herb) by exogenous application of glutathione [J]. In Vitro Cell Develop Biol-Plant, 2012, 48(1): 113-119.
[22] WU Zhichao, ZHAO Xiaohu, SUN Xuecheng, et al. Antioxidant enzyme systems and the ascorbate-glutathione cycle as contributing factors to cadmium accumulation and tolerance in two oilseed rape cultivars (Brassica napus L.) under moderate cadmium stress [J]. Chemosphere, 2015, 138: 526-536.
[23] JOZEFCZAK M, KEUNEN E, SCHAT H, et al. Differential response of Arabidopsis leaves and roots to cadmium: glutathione-related chelating capacity vs antioxidant capacity [J]. Plant Physiol Biochem, 2014, 83: 1-9.
[24] MOSTOFA M G, SERAJ Z I, FUJITA M. Exogenous sodium nitroprusside and glutathione alleviate copper toxicity by reducing copper uptake and oxidative damage in rice (Oryza sativa L.) seedlings [J]. Protoplasma, 2014, 251(6): 1373-1386.
[25] NAHAR K, HASANUZZA M, ALAM M M, et al. Roles of exogenous glutathione in antioxidant defense system and methylglyoxal detoxification during salt stress in mung bean [J]. Biol Plant, 2015, 59(4): 745-756.
[26] BOURANIS D L, CHORIANOPOULOU S N, NOCITO F F, et al. The crucial role of sulfur in a phytoremediation process lessons from the poaceae species as phytoremediats: a review[G]// KATSIFARAKIS K L, THEODOSSIOU N, CHRISTODOULATOS C, et al. Protection and Restoration of the Environment XI. Thessaloniki: [n. s. ], 2012: 634-643.
[27] COBBETT C S, MAY M J, HOWDEN R, et al. The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thalianais deficient in γ-glutamylcysteine synthetase [J]. Plant J Cell Mol Biol, 1998, 16(1): 73-78.
[28] SCHLAEPPI K, BODENHAUSEN N, BUCHALA A, et al. The glutathione-deficient mutant pad2-1 accumulates lower amounts of glucosinolates and is more susceptible to the insect herbivore Spodoptera littoralis [J]. Plant J Cell Mol Biol, 2008, 55(5): 774-786.
[29] GEUFLORES F, NIELSEN M T, NAFISI M, et al. Glucosinolate engineering identifies a γ-glutamyl peptidase [J]. Nat Chem Biol, 2009, 5(8): 575-577.
[30] BEDNAREK P. Sulfur-containing secondary metabolites from Arabidopsis thaliana and other Brassicaceae with function in plant immunity [J]. Chem Biol Chem, 2012, 13(13): 1846-1859.
[31] GEUFLORES F, MOLDRUP M E, BÖTTCHER C, et al. Cytosolic γ-glutamyl peptidases process glutathione conjugates in the biosynthesis of glucosinolates and camalexin in Arabidopsis [J]. Plant Cell, 2011, 23(6): 2456-2469.
[32] 李国强, 朱云集, 沈学善.植物硫素同化途径及其调控[J].植物生理学通讯, 2005, 41(6): 699-704.

LI Guoqiang, ZHU Yunji, SHEN Xueshan. Plant sulphur assimilation pathways and its regulation [J]. Plant Physiol Commun, 2005, 41(6): 699-704.
[33] PIOTROWSKI M, SCHEMENEWITZ A, LOPUKHINA A, et al. Desulfoglucosinolate sulfotransferases from Arabidopsis thaliana catalyze the final step in the biosynthesis of the glucosinolate core structure [J]. J Biol Chem, 2004, 279(49): 50717-50725.
[34] MUGFORD S G, LEE B R, KOPRIVOVA A, et al. Control of sulfur partitioning between primary and secondary metabolism [J]. Plant J Cell Mol Biol, 2011, 65(1): 96-105.
[35] KLIEN M, REICHELT M, GERSHENZON J, et al. The three desulfoglucosinolate sulfotransferase proteins in Arabidopsis have different substrate specificities and are differentially expressed [J]. FEBS J, 2006, 273(1): 122-136.
[36] MUGFORD S G, YOSHIMOTO N, REICHELT M, et al. Disruption of adenosine-5'-phosphosulfate kinase in Arabidopsis reduces levels of sulfated secondary metabolites [J]. Plant Cell, 2009, 21(3): 910-927.
[37] BOHRER A S, KOPRIVA S, TAKAHASHI H. Plastid-cytosol partitioning and integration of metabolic pathways for APS/PAPS biosynthesis in Arabidopsis thaliana [J]. Front Plant Sci, 2015, 5: 751. doi: 10.3389/fpls.2014.00751.
[38] CALDERWOOD A, MORRIS R J, KOPRIVA S. Predictive sulfur metabolism: a field in flux [J]. Front Plant Sci, 2014, 5: 646. doi:org/10.3389/fpls.2014.00646.
[39] 孟赐福, 姜培坤, 曹志洪, 等.植物体内硫的运输与同化的研究进展[J].浙江农业学报, 2011, 23(2): 427-432.

MENG Cifu, JIANG Peikun, CAO Zhihong, et al. Recent progess on transport assimilation of sulfur in plants [J]. Acta Agric Zhejiang, 2011, 23(2): 427-432.
[40] 苗慧莹. 葡萄糖和植物激素协同调控十字花科植物中芥子油苷生物合成的机制研究[D]. 杭州: 浙江大学, 2015.

MIAO Huiying. Glucose and Plant Hormones Synergetically Modulate Glucosinolates Biosynthesis in Crucifera Plants[D]. Hangzhou: Zhejiang University, 2015
[41] 朱凤羽, 陈亚州, 阎秀峰.植物芥子油苷代谢与硫营养[J].植物生理学通讯, 2007, 43(6): 1189-1194.

ZHU Fengyu, CHEN Yazhou, YAN Xiufeng. Plant glucosinolate metabolism and sulfur nutrition [J]. Plant Physiol Commun, 2007, 43(6): 1189-1194.
[42] HUSEBY S, KOPRIVOVA A, LEE B R, et al. Diurnal and light regulation of sulphur assimilation and glucosinolate biosynthesis in Arabidopsis [J]. J Exp Bot, 2013, 64(4): 1039-1048.