[1] QUESADA V, DEAN C, SIMPSON G G, et al. Regulated RNA processing in the control of Arabidopsis flowering[J]. Int J Dev Biol, 2005, 49(5/6):773-780.
[2] SIMPSON G G, DEAN C. Arabidopsis, the Rosetta stone of flowering time?[J]. Science, 2002, 296(5566):285-289.
[3] LIU Chang, CHEN Hongyan, HONG Linger, et al. Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis[J]. Development, 2008, 135(8):1481-1491.
[4] DENNIS E S, PEACOCK W J. Epigenetic regulation of flowering[J]. Curr Opin Plant Biol, 2007, 10(5):520-527.
[5] BOSS P K, BASTOW R M, MYLNE J S, et al. Multiple pathways in the decision to flower:enabling, promoting, and resetting[J]. Plant Cell, 2004, 16(suppl):S18-S31.
[6] WANG Cunxi, TIAN Qing, HOU Zhenglin, et al. The Arabidopsis thaliana AT PRP39-1 gene, encoding a tetratricopeptide repeat protein with similarity to the yeast pre mRNA processing protein PRP39, affects flowering time[J]. Plant Cell Rep, 2007, 26(8):1357-1366.
[7] MOURADOV A, CREMER F, COUPLAND G. Control of flowering time interacting pathways as a basis for diversity[J]. Plant Cell, 2002, 14(suppl):S111-S130.
[8] PENG Zhenhua, LU Ying, LI Lubin, et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla)[J]. Nat Gen, 2013, 45(4):456-461.
[9] TORTI S, FORNARA F. AGL24 acts in concert with SOC1 and FUL during Arabidopsis floral transition[J]. Plant Sign Behav, 2012, 7(10):1251-1254.
[10] NAVARRO C, CRUZ-ORÓE, PRAT S. Conserved function of FLOWERING LOCUS T (FT) homologues as signals for storage organ differentiation[J]. Curr Opin Plant Biol, 2015, 23(1):45-53.
[11] YAMASHINO T, YAMAWAKI S, HAGUI E, et al. Clock-controlled and FLOWERING LOCUS T (FT)-dependent photoperiodic pathway in Lotus japonicus Ⅰ:verification of the flowering-associated function of an FT homolog[J]. Biosci Biotechnol Biochem, 2010, 77(4):747-753.
[12] NAKANO Y, HIGUCHI Y, YOSHIDA Y, et al. Environmental responses of the FT/TFL1 gene family and their involvement in flower induction in Fragaria×ananassa[J]. J Plant Physiol, 2015, 177(24):60-66.
[13] LEE J, LEE I. Regulation and function of SOC1, a flowering pathway integrator[J]. J Exp Bot, 2010, 61(9):2247-2254.
[14] LEE J H, YOO S J, PARK S H, et al. Role of SVP in the control of flowering time by ambient temperature in Arabidopsis[J]. Genes Dev, 2007, 21(4):397-402.
[15] SHEN Lisha, KANG Y G G, LIU Lu, et al. The J-domain protein J3 mediates the integration of flowering signals in Arabidopsis[J]. Plant Cell, 2011, 23(2):499-514.
[16] RAJAN V, D'SILVA P. Arabidopsis thaliana J-class heat shock proteins:cellular stress sensors[J]. Funct Int Genom, 2009, 9(4):433-446.
[17] MIERNYK J A. The J-domain proteins of Arabidopsis thaliana:an unexpectedly large and diverse family of chaperones[J]. Cell Stress Chap, 2001, 6(3):209-218.
[18] QIAN Yanqiu, PATEL D, HARTL F U, et al. Nucleic magnetic resonance solution structure of the human Hsp40(HDJ-1) J-domain[J]. J Mol Biol, 1996, 260(2):224-235.
[19] CRAIG E A, HUANG P, ARON R, et al. The diverse roles of J-proteins, the obligate Hsp70 co-chaperone[J]. Rev Physiol Biochem Pharmacol, 2006, 156(1):1-21.
[20] MARTINEZ-YAMOUT M, LEGGE G B, ZHANG Ouwen, et al. Solution structure of the cysteine-rich domain of the Escherichia coli chaperone protein DnaJ[J]. J Mol Biol, 2000, 300(4):805-818.
[21] MIERNYK J A. The J-domain proteins of Arabidopsis thaliana:an unexpectedly large and diverse family of chaperones[J]. Cell Stress Chap, 2001, 6(3):209-218.
[22] SALAS-MUÑOZ S, RODRÍGUEZ-HERNÁNDEZ A A, ORTEGA-AMARO M A, et al. Arabidopsis AtDjA3 null mutant shows increased sensitivity to Abscisic acid, salt, and osmotic stress in germination and post-germination stages[J]. Plant Sci, 2016, 7(2):220. doi:10.3389/fpls.2016.00220.
[23] VITHA S, FROEHLICH J E, KOKSHAROVA O, et al. ARC6 is a J-domain plastid division protein and an evolutionary descendant of the cyanobacterial cell division protein Ftn2[J]. Plant Cell, 2003, 15(8):1918-1933.
[24] CHEN Kunming, HOLMSTROM M, RAKSAJIT W, et al. Small chloroplast-targeted DnaJ proteins are involved in optimization of photosynthetic reactions in Arabidopsis thaliana[J]. BMC Plant Biol, 2010, 10(1):43. doi:10.1186/1471-2229-10-43.
[25] SHIMADA H, MOCHIZUKI M, OGURA K, et al. Arabidopsis cotyledon-specific chloroplast biogenesis factor CYO1 is a protein disulfide isomerase[J]. Plant Cell, 2007, 19(10):3157-3169.
[26] SEKI M, NARUSAKA M, ABE H, et al. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray[J]. Plant Cell, 2001, 13(1):61-72.
[27] CHAI Tuanyao, ZHANG Yuxiu, ZHAO Wenming. Cloning of cDNA and expression analysis of DnaJ-like gene under heavy metal stress in bean[J]. Progr Nat Sci, 2000, 10(2):135-140.
[28] SEDBROOK J C, CHEN Rujin, MASSON P H. ARG1(altered response to gravity) encodes a DnaJ-like protein that potentially interacts with the cytoskeleton[J]. Proc Natl Acad Sci USA, 1999, 96(3):1140-1145.
[29] GUAN Changhui, ROAEN E S, BOONSIRICHAI K, et al. The ARG1-LIKE2 gene of Arabidopsis functions in a gravity signal transduction pathway that is genetically distinct from the PGM pathway[J]. Plant Physiol, 2003, 133(1):100-112.
[30] THEIβEN G, KIM J T, SAEDLER H. Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes[J]. J Mol Evol, 1996, 43(5):484-516.
[31] WIGGE P A, KIM M C, JAEGER K E, et al. Integration of spatial and temporal information during floral induction in Arabidopsis[J]. Science, 2005, 309(5737):1056-1059.
[32] de CARVALHO A L, NELSON B W, BIANCHINI M C, et al. Bamboo-dominated forests of the southwest Amazon:detection, spatial extent, life cycle length and flowering waves[J]. PLoS One, 2013, 8(1):e54852. doi:10.1371/journal.pone/0054852.
[33] 齐飞艳, 胡陶, 彭镇华, 等.毛竹实时荧光定量PCR内参基因的筛选及成花基因PheTFL1表达分析[J].西北植物学报, 2013, 33(1):48-52.

QI Feiyan, HU Tao, PENG Zhenhua, et al. Screening of reference genes used in qRT-PCR and expression analysis of PheTFL1 gene in moso bambo[J]. Acta Bot Boreal-Occident Sin, 2013, 33(1):48-52.
[34] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Cr method[J]. Methods, 2001, 25(4):402-408.
[35] 王小利, 吴佳海, 刘晓霞, 等.高羊茅春化基因FaVRN1亚细胞定位与差异表达分析[J].基因组学与应用生物学, 2011, 30(2):152-158.

WANG Xiaoli, WU Jiahai, LIU Xiaoxia, et al. Subcellular localization and differential expression analysis of vernalizational gene FaVRN1 in tall fescue[J]. Genomics Appl Biol, 2011, 30(2):152-158.
[36] CLOUGH S J, BENT A F. Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana[J]. Plant J Cell Mol Biol, 1998, 16(6):735-743.
[37] 高志民, 范少辉, 高健, 等.基于CTAB法提取毛竹基因组DNA的探讨[J].林业科学研究, 2006, 19(6):725-728.

GAO Zhimin, FAN Shaohui, GAO Jian, et al. Extract genomic DNA form Phyllostachys edulis by CTAB-based method[J]. For Res, 2006, 19(6):725-728.
[38] 张素芝, 左建儒.拟南芥开花时间调控的研究进展[J].生物化学与生物物理进展, 2006, 33(4):301-309.

ZHANG Suzhi, ZUO Jianru. Advance in the flowering time control of Arabidopsis[J]. Prog Biochem Biophys, 2006, 33(4):301-309.
[39] LI Dan, LIU Chang, SHEN Lisha, et al. A repressor complex governs the integration of flowering signals in Arabidopsis[J]. Dev Cell, 2008, 15(1):110-120.