[1] CHEN Xiuping, GUO Jiajie, BAO Jiaolin, et al. The anticancer properties of Salvia miltiorrhiza Bunge (Danshen):a systematic review[J]. Med Res Rev, 2014, 34(4):768-794. doi:10.1002/med.21304.
[2] WANG Xin, LEE W, ZHOU Xuelin, et al. A pharmacodynamic-pharmacokinetic (PD-PK) study on the effects of danshen(Salvia miltiorrhiza) on midazolam, a model CYP3A probe substrate, in the rat[J]. Phytomedicine, 2010, 17(11):876-883. doi:10.1016/j.phymed.2010.05.007.
[3] LANGE B, RUJAN T, MARTIN W, et al. Isoprenoid biosynthesis:the evolution of two ancient and distinct pathways across genomes[J]. Proc Natl Acad Sci USA, 2000, 97(24):13172-13177. doi:10.1073/pnas.240454797.
[4] ROHMER M, KNANI M, SIMONIN P, et al. Isoprenoid biosynthesis in bacteria:a novel pathway for the early steps leading toisopentenyldiphosphate[J]. Biochem J, 1993, 295(2):517-524. doi:10.1042/bj2950517.
[5] SHI Min, ZHOU Wei, ZHANG Jianlin, et al. Methyl jasmonate induction of tanshinone biosynthesis in Salvia miltiorrhiza hairy roots is mediated by JASMONATE ZIM-DOMAIN repressor proteinsb[J]. Sci Rep, 2016, 6(1):20919. doi:10.1038/srep20919.
[6] 晏琼, 胡宗定, 吴建勇.生物与非生物诱导子协同作用对丹参毛状根培养生产丹参酮的影响[J].中国中药杂志, 2006, 31(3):188-191.

YAN Qiong, HU Zongding, WU Jianyong. Synergistic effects of biotic and abiotic elicitors on the production of tanshinones in Salvia miltiorrhiza hairy root culture[J]. China J Chin Mater Med, 2006, 31(3):188-191.
[7] 晏琼, 胡宗定, 吴建勇.生物和非生物诱导子对丹参毛状根培养生产丹参酮的影响[J].中草药, 2006, 37(2):262-265.

YAN Qiong, HU Zongding, WU Jianyong. Influence of biotic and abiotic elicitors on production of tanshinones in Salvia miltiorrhiza hairy root culture[J]. China Tradit Herb Drug, 2006, 37(2):262-265.
[8] GE Xiuchun, WU Jianyong. Induction and potentiation of diterpenoid tanshinone accumulation in Salvia miltiorrhiza hairy roots by β-aminobutyric acid[J]. Appl Microbiol Biot, 2005, 68(2):183-188. doi:10.1007/s00253-004-1873-2.
[9] YAN Yan, ZHANG Shuncang, YANG Dongfeng, et al. Effects of Streptomyces pactum Act12 on Salvia miltiorrhizahairy root growth and tanshinone synthesis and its mechanisms[J]. Appl Biochem Biotechnol, 2014, 173(4):883-893. doi:10.1007/s12010-014-0876-4.
[10] KAI Guoyin, LIAO Pan, XU Hui, et al. Molecular mechanism of elicitor-induced tanshinone accumulation in Salvia miltiorrhiza hairy rootcultures[J]. Acta Physiol Plant, 2012, 34(4):1421-1433. doi:10.1007/s11738-012-0940-z.
[11] 郭肖红, 高文远, 陈海霞, 等.金属离子对丹参酮ⅡA和原儿茶醛生物合成的影响[J].中国中药杂志, 2005, 30(12):885-888.

GUO Xiaohong, GAO Wenyuan, CHEN Haixia, et al. Effects of mineral cations on the accumulation of tanshinone ⅡA and protocatechuic aldehyde in the adventitious root culture of Salvia miltiorrhiza[J]. China J Chin Mater Med, 2005, 30(12):885-888.
[12] HAO Xiaolong, SHI Min, CUI Lijie, et al. Effects of methyl jasmonate and salicylic acid on tanshinone production and biosynthetic gene expression in transgenic Salvia miltiorrhiza hairy roots[J]. Biotechnol Appl Biochem, 2015, 62(1):24-31. doi:10.1002/bab.1236.
[13] ZHOU Jie, FANG Lei, WANG Xiao, et al. La dramaticaly enhances the accumulation of tanshinones in Salvia miltiorrhiza hairy root cultures[J]. Earth Sci Res, 2012, 2(1):187-192. doi:http://dx.doi.org/10.5539/esr.v2n1p187.
[14] 房翠萍. 丹参多倍体诱导、毛状根培养及其丹参酮产量提高的研究[D]. 合肥: 安徽农业大学, 2011.

FANG Cuiping. Polyploidy Induction, Hairy Root Culture and Improve the Yield of Tanshinone in Salvia miltiorrhiza[D]. Hefei: Anhui Agriculture University, 2011.
[15] YANG Dongfeng, SHENG Dongfeng, DUAN Qimei, et al. PEG and ABA trigger the burst of reactive oxygen species to increase tanshinone production in Salvia miltiorrhiza hairy roots[J]. J Plant Growth Regul, 2012, 31(4):579-587. doi:10.1007/s00344-012-9268-6.
[16] YANG Dongfeng, MA Pengda, LIANG Xiao, et al. PEG and ABA trigger methyl jasmonate accumulation to induce the MEP pathway and increase tanshinone production in Salvia miltiorrhiza hairy roots[J]. Physiol Plantarum, 2012, 146(2):173-183. doi:10.1111/j.1399-3054.2012.01603.x.
[17] 李洁.植物转录因子与基因调控[J].生物学通报, 2004, 39(3):9-11.

LI Jie. Plant transcription factors and gene regulation[J]. Bull Biol, 2004, 39(3):9-11.
[18] 张鑫, 宋经元, 胡鸢雷, 等. bHLH转录因子调控植物活性成分生物合成的研究进展[J].药学学报, 2014, 49(4):435-442.

ZHANG Xin, SONG Jingyuan, HU Yuanlei, et al. Research progress of the regulation on active compound biosynthesis by the bHLH transcription factors in plants[J]. Acta Pharm Sin, 2014, 49(4):435-442.
[19] WANG Jinyan, HU Zhongze, ZHAO Tongmin, et al. Genome-wide analysis of bHLH transcription factor and involvement in the infection by yellow leaf curl virus in tomato (Solanum lycopersicum)[J]. BMC Genom, 2015, 16(1):1-14. doi:10.1186/s12864-015-1249-2.
[20] PIRES N, DOLAN L. Origin and diversification of basic-helix-loop-helix proteins in plants[J]. Mol Biol Evol, 2010, 27(4):862-874. doi:10.1093/molbev/msp288.
[21] FERRÉ-D'AMARÉA R, PRENDERGAST G C, ZIFF E B, et al. Recognition by max of its cognate DNA through a dimeric b/HLH/Z domain[J]. Nature, 1993, 363(6424):38-45. doi:10.1038/363038a0.
[22] XIONG Yuqing, LIU Tieyan, TIAN Chaoguang, et al. Transcription factors in rice:a genome-wide comparative analysis between monocots and eudicots[J]. Plant Mol Biol, 2005, 59(1):191-203. doi:10.1007/s11103-005-6503-6.
[23] RUSHTON P J, BOKOWIEC M T, HAN Shengcheng, et al. Tobacco transcription factors:novel insights into transcriptional regulation in the Solanaceae[J]. Plant Physiol, 2008, 147(1):280-295. doi:https://doi.org/10.1104/pp.107.114041.
[24] JAILLON O, AURY J M, NOEL B, et al. The grapevine genome sequence suggests ancestral hexaploidization inmajor angiosperm phyla[J]. Nature, 2007, 449(7161):463-467. doi:10.1038/nature06148.
[25] ZHANG Xin, LUO Hongmei, XU Zhichao, et al. Genome-wide characterisation and analysis of bHLH transcription factors related to tanshinone biosynthesis in Salvia miltiorrhiza[J]. Sci Rep, 2015, 5:11244. doi:10.1038/srep11244.
[26] 汪琬宜, 蒋喜红, 张利华, 等.丹参转录因子SmbHLH1基因的克隆和表达分析[J].中国中药杂志, 2011, 36(24):3416-3420.

WANG Wanyi, JIANG Xihong, ZHANG Lihua, et al. Isolation and characteristics of SmbHLH1 gene in Salvia miltiorrhiza[J]. China J Chin Mater Med, 2011, 36(24):3416-3420.
[27] 周宏骏, 武玉翠, 晋鑫鑫, 等.丹参转录因子SmbHLH93的克隆及表达模式分析[J].中草药, 2014, 45(23):3449-3455.

ZHOU Hongjun, WU Yucui, JIN Xinxin, et al. Cloning and expression pattern analysis of transcription factor SmbHLH93 from Salvia miltiorrhiza[J]. Chin Tradit Herb Drug, 2014, 45(23):3449-3455.
[28] HONG Gaojie, XUE Xueyi, MAO Yingbo, et al. Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression[J]. Plant Cell, 2012, 24(6):2635-2648. doi:10.1105/tpc.112.098749.
[29] ZHOU Yangyun, SUN Wei, CHEN Junfeng, et al. SmMYC2a and SmMYC2b played similar but irreplaceable roles in regulating the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza[J]. Sci Rep, 2016, 6:22852. doi:10.1038/srep22852.
[30] 王晓荣. 丹参bHLH类转录因子MYCs的基因克隆及功能初步研究[D]. 上海: 上海师范大学, 2015.

WANG Xiaorong. Isolation and Function Analysis of bHLH Translation Factor in Salvia miltiorrhiza[D]. Shanghai: Shanghai Normal University, 2015.
[31] RUSHTON P J, TORRES J T, PARNISKE M, et al. Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes[J]. Embo J, 1996, 15(20):5690-5700.
[32] XIE Zhen, ZHANG Zhonglin, ZOU Xiaolu, et al. Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells[J]. Plant Physiol, 2005, 137(1):176. doi:https://doi.org/10.1104/pp.104.054312.
[33] LI Caili, LI Dongqiao, SHAO Fenjuan, et al. Molecular cloning and expression analysis of WRKY transcription factor genes in Salvia miltiorrhiza[J]. BMC Genom, 2015, 16(1):200. doi:10.1186/s12864-015-1411-x.
[34] 郝小龙. 丹参SmWRKY3和SmWRKY70转录因子的功能研究[D]. 上海: 上海师范大学, 2014.

HAO Xiaolong. The Functional Study of SmWRKY3 and SmWRKY70 Transcription Factor in Salvia miltiorrhiza[D]. Shanghai: Shanghai Normal University, 2014.
[35] 李磊磊. 丹参WRKY转录因子SmWRKY54的功能初步研究[D]. 上海: 上海师范大学, 2016.

LI Leilei. The Functional Study of SmWRKY54 Transcription Factor in Salvia miltiorrhiza[D]. Shanghai: Shanghai Normal University, 2016.
[36] FILICHKIN S A, PRIEST H D, GIVAN S A, et al. Genome-wide mapping of alternative splicing in Arabidopsis thaliana[J]. Genome Res, 2010, 20(1):45-58. doi:10.1101/gr.093302.109.
[37] MARQUEZ Y, BROWN J W, SIMPSON C, et al. Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis[J]. Genome Res, 2012, 22(6):1184-1195. doi:10.1101/gr.134106.111.
[38] SHEN Yangting, ZHOU Zhengkui, WANG Zheng, et al. Global dissection of alternative splicing in paleopolyploid soybean[J]. Plant Cell, 2014, 26(3):996-1008. doi:https://doi.org/10.1105/tpc.114.122739.
[39] BRADEN W, GENGKON L, GAURAV S, et al. Genome-wide landscape of alternative splicing events in brachypodium distachyon[J]. DNA Res, 2013, 20(2):163-171. doi:10.1093/dnares/dss041.
[40] ZHANG Guojie, GUO Guangwu, HU Xueda, et al. Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome[J]. Genome Res, 2010, 20(5):646-654. doi:10.1101/gr.100677.109.
[41] XU Zhicao, PETERS R J, WEIRATHER J, et al. Full-length transcriptome sequences and splice variants obtained by a combination of sequencing platforms applied to different root tissues of Salvia miltiorrhiza and tanshinone biosynthesis[J]. Plant J, 2015, 82(6):951-961. doi:10.1111/tpj.12865.