[1] PARTON W J, SCHIMEL D S, COLE C V, et al. Analysis of factors controlling soil organic matter levels in Great Plains grasslands[J]. Soil Sci Soc Am J, 1987, 51(1):1173-1179.
[2] JONES C A. Estimation of an active fraction of soil nitrogen[J]. Commun Soil Sci Plant Anal, 1984, 15(1):23-32.
[3] 杨添, 戴伟, 安晓娟, 等.天然林土壤有机碳及矿化特征研究[J].环境科学, 2014, 35(3):1105-1110.

YANG Tian, DAI Wei, AN Xiaojuan, et al. Organic carbon and carbon mineralization characteristics in nature forestry soil[J]. Environ Sci, 2014, 35(3):1105-1110.
[4] 刘浩宇, 巩晟萱, 王兵, 等.阿尔泰山冷杉林下土壤有机碳矿化特征[J].水土保持通报, 2016, 36(1):327-331.

LIU Haoyu, GONG Shengxuan, WANG Bing, et al. Mineralization characteristics of soil organic carbon under Abies nephrolepis forest in Altai Mountains[J]. Bull Soil Water Conserv, 2016, 36(1):327-331.
[5] 麻泽宇, 王丹, 戴伟, 等.阿尔泰山不同海拔梯度天然冷杉林土壤特征及肥力综合评价[J].水土保持研究, 2016, 23(5):134-140.

MA Zeyu, WANG Dan, DAI Wei, et al. Soil characteristics and fertility evaluation of Abies sibirica forest at different altitude gradient in Altai Mountain[J]. Res Soil Water Conserv, 2016, 23(5):134-140.
[6] GIARDINA C P, RYAN M G. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature[J]. Nature, 2000, 404(6780):858-861.
[7] FANG Chu, MONCRIEFF J B. The dependence of soil CO2 efflux on temperature[J]. Soil Biol Biochem, 2001, 33(2):155-165.
[8] HOPKINS D W, SPARROW A D, ELBERLING B, et al. Carbon, nitrogen and temperature controls on microbial activity in soils from an Antarctic dry valley[J]. Soil Biol Biochem, 2006, 38(10):3130-3140.
[9] PANG Huan, ZHANG Rui, DAI Wei, et al. Application of two exponential equation in the study of soil organic carbon mineralization in natural forests[J]. Adv J Food Sci Technol, 2014, 6(10):1117-1123.
[10] 宋萍, 洪伟, 吴承祯, 等.中亚热带丝栗栲次生林群落高度级结构分析[J].应用与环境生物学报, 2003, 9(5):460-464.

SONG Ping, HONG Wei, WU Chengzhen, et al. Highness class structure of Castanopsis fargesii secondary forest in the middle subtropic[J]. Chin J Appl Environ Biol, 2003, 9(5):460-464.
[11] 赵广东, 王兵, 李少宁, 等.江西大岗山常绿阔叶林优势种丝栗栲和苦槠栲不同叶龄叶片光合特性研究[J].江西农业大学学报, 2005, 27(2):161-165.

ZHAO Guangdong, WANG Bing, LI Shaoning, et al. Photosynthetic characteristics of dominant species Castanopsis fargesii and Castanopsis sclerophylla in different leaf ages in Dagangshan Mountain, Jiangxi Province[J]. Acta Agric Univ Jiangxi, 2005, 27(2):161-165.
[12] 钱莲文, 吴承祯, 洪伟, 等.中亚热带丝栗栲群落物种-个体关系的研究[J].中国生态农业学报, 2004, 12(4):170-173.

QIAN Lianwen, WU Chengzhen, HONG Wei, et al. Species-individuals relationships of Castanopsis fargesii community in the middle subtropics[J]. Chin J Eco-Agric, 2004, 12(4):170-173.
[13] 林捷, 叶功富, 何建源, 等.武夷山丝栗栲天然林群落的物种多样性研究[J].江西农业大学学报, 2005, 27(3):340-344.

LIN Jie, YE Gongfu, HE Jianyuan, et al. A study on species diversity in Castanopsis fargesii natural forest community in Wuyishan Mountains[J]. Acta Agric Univ Jiangxi, 2005, 27(3):340-344.
[14] 巩晟萱, 王丹, 戴伟, 等.不同生长时期丝栗栲林下土壤有机碳含量及矿化特征[J].水土保持通报, 2015, 35(5):59-63.

GONG Shengxuan, WANG Dan, DAI Wei, et al. Content and mineralization characteristics of soil organic carbon under Castanopsis fargesii forests in different growth periods[J]. Bull Soil Water Conserv, 2015, 35(5):59-63.
[15] 国家林业局. LY/T 1210-1999森林土壤分析方法[S]. 北京: 中国标准出版社, 1999.
[16] 鲍士旦.土壤农化分析[M]. 3版.北京:中国农业出版社, 2000.
[17] ZOU X M, RUAN H H, FU Y, et al. Estimating soil labile organic carbon and potential turnover rates using a sequential fumigation-incubation procedure[J]. Soil Biol Biochem, 2005, 37(10):1923-1928.
[18] BOYLE M, PAUL E A. Carbon and nitrogen mineralization kinetics in soil previously amended with sewage sludge[J]. Soil Sci Soci Am J, 1989, 53(1):99-103.
[19] KOURTEV P S, EHRENFELD J G, HÄGGBLOM M. Exotic plant species alter the microbial community structure and function in the soil[J]. Ecology, 2008, 83(11):3152-3166.
[20] 李明佳, 王铸豪. 鼎湖山常见植物的物候[G]//中国科学院鼎湖山森林生态系统定位研究站. 热带亚热带森林生态系统研究: 第2集. 广州: 科学普及出版社广州分社, 1984: 1-11.
[21] 官丽莉, 周国逸, 张德强, 等.鼎湖山南亚热带常绿阔叶林凋落物量20年动态研究[J].植物生态学报, 2004, 28(4):449-456.

GUAN Lili, ZHOU Guoyi, ZHANG Deqiang, et al. Twenty years of litter fall dynamics in subtropical evergreen broad-leaved forests at the Dinghushan forest ecosystem research station[J]. Acta Phytoecol Sin, 2004, 28(4):449-456.
[22] 赵其国, 王明珠, 何园球.我国热带亚热带森林凋落物及其对土壤的影响[J].土壤, 1991, 23(1):8-15.

ZHAO Qiguo, WANG Mingzhu, HE Yuanqiu. Litter of tropical and subtropical forests in China and its effect on soil[J]. Soil, 1991, 23(1):8-15.
[23] 张驰, 张林, 李鹏, 等.亚热带常绿阔叶林凋落物生产及季节动态对模拟氮沉降增加的响应[J].生态学杂志, 2014, 33(5):1205-1210.

ZHANG Chi, ZHANG Lin, LI Peng, et al. Response of litter production and its seasonality to increased nitrogen deposition in a subtropical evergreen broad-leaved forest[J]. Chin J Ecol, 2014, 33(5):1205-1210.
[24] AERTS R, de CALUWE H. Nutritional and plant-mediated controls on leaf litter decomposition of carex species[J]. Ecology, 1997, 78(1):244-260.
[25] 郭剑芬, 杨玉盛, 陈光水, 等.森林凋落物分解研究进展[J].林业科学, 2006, 42(4):93-100.

GUO Jianfen, YANG Yusheng, CHEN Guangshui, et al. A review on litter decomposition in forest ecosystem[J]. Sci Silv Sin, 2006, 42(4):93-100.
[26] 代静玉, 秦淑平, 周江敏.水杉凋落物分解过程中溶解性有机质的分组组成变化[J].生态环境, 2004, 13(2):207-210.

DAI Jingyu, QIN Shuping, ZHOU Jiangmin. Dynamic changes of DOM fractions during decaying process of Metasequoia glyptostrobodies litter[J]. Ecol Environ, 2004, 13(2):207-210.
[27] TAYLOR B R, PARKINSON D, PARSONS W F J. Nitrogen and lignin content as predictor of litter decay rates:a microcosm test[J]. Ecology, 1989, 70(1):97-104.
[28] 夏汉平, 余清发, 张德强.鼎湖山3种不同林型下的土壤酸度和养分含量差异及其季节动态变化特性[J].生态学报, 1997, 17(6):645-653.

XIA Hanping, YU Qingfa, ZHANG Deqiang. The soil acidity and nutrient contents, and their characteristics of seasonal dynamic changes under 3 different forests of Dinghushan Nature Reserve[J]. Acta Ecol Sin, 1997, 17(6):645-653.