[1] 徐剑锋, 王雷, 熊瑛, 等.土壤重金属污染强化植物修复技术研究进展[J].环境工程技术学报, 2017, 7(3):366-373. http://mall.cnki.net/magazine/Article/HKWZ201703015.htm

XU Jianfeng, WANG Lei, XIONG Ying, et al. Research progress on strengthening phytoremediation technologies for heavy metals contaminated soil[J]. J Environ Eng Technol, 2017, 7(3):366-373. http://mall.cnki.net/magazine/Article/HKWZ201703015.htm
[2] LI Zhiyuan, MA Zongwei, van der KUIJP T J, et al. A review of soil heavy metal pollution from mines in China:pollution and health risk assessment[J]. Sci Total Environ, 2014, 468/469:843-853. doi:  10.1016/j.scitotenv.2013.08.090
[3] WAN Xiaoming, LEI Mei, CHEN Tongbin. Cost-benefit calculation of phytoremediation technology for heavy-metal-contaminated soil[J]. Sci Total Environ, 2016, 563/564:796-802. doi:  10.1016/j.scitotenv.2015.12.080
[4] 席梅竹, 白中科, 赵中秋.重金属污染土壤的螯合剂诱导植物修复研究进展[J].中国土壤与肥料, 2008(5):6-11. http://www.cqvip.com/qk/93143A/200805/28425042.html

XI Meizhu, BAI Zhongke, ZHAO Zhongqiu. Advances on the study of chelate-enhanced phytorermediation for heavy metal contaminated soils[J]. Soil Fert Sci China, 2008(5):6-11. http://www.cqvip.com/qk/93143A/200805/28425042.html
[5] 刘孝利, 曾昭霞, 铁柏清, 等.几种修复措施对Cd淋失及土壤剖面运移影响[J].环境科学, 2016, 37(2):734-739. http://www.cnki.com.cn/Article/CJFDTotal-HJKZ201602049.htm

LIU Xiaoli, ZENG Zhaoxia, TIE Baiqing, et al. Cd runoff load and soil profile movement after implementation of some typical contaminated agricultural soil remediation strategies[J]. Environ Sci, 2016, 37(2):734-739. http://www.cnki.com.cn/Article/CJFDTotal-HJKZ201602049.htm
[6] 张玉秀, 黄智博, 柴团耀.螯合剂强化重金属污染土壤植物修复的机制和应用研究进展[J].自然科学进展, 2009, 19(11):1149-1158. doi:  10.3321/j.issn:1002-008X.2009.11.001

ZHANG Yuxiu, HUANG Zhibo, CHAI Tuanyao. Advances in mechanisms and applications of chelating agents for phytoremediation of heavy metal contaminated soils[J]. Progr Nat Sci, 2009, 19(11):1149-1158. doi:  10.3321/j.issn:1002-008X.2009.11.001
[7] LUO Jie, QI Shihua, SOPHIE X W, et al. An evaluation of EDTA additions for improving the phytoremediation efficiency of different plants under various cultivation systems[J]. Ecotoxicology, 2016, 25(4):646-654. doi:  10.1007/s10646-016-1623-0
[8] LAI H Y, CHEN Z S. The influence of EDTA application on the interactions of cadmium, zinc, and lead and their uptake of rainbow pink (Dianthus chinensis)[J]. J Hazard Mater, 2006, 137(3):1710. doi:  10.1016/j.jhazmat.2006.05.014
[9] CHIGBO C, BATTY L. Chelate-assisted phytoremediation of Cu-pyrene-contaminated soil using Z. mays[J]. Water Air Soil Pollut, 2015, 226(3):74. doi: 10.1007/s11270-014-2277-2.
[10] 龙珍, 徐海涛, 张亚平, 等.活化剂联合植物移除污染土壤重金属的研究进展[J].环境工程, 2016, 34(10):172-176. http://wuxizazhi.cnki.net/Sub/hjzy/a/HJGC201610035.html

LONG Zhen, XU Haitao, ZHANG Yaping, et al. Removal of heavy metals from contaminated soils by activating agents combined with plants[J]. Environ Eng, 2016, 34(10):172-176. http://wuxizazhi.cnki.net/Sub/hjzy/a/HJGC201610035.html
[11] 易龙生, 王文燕, 陶冶, 等.有机酸对污染土壤重金属的淋洗效果研究[J].农业环境科学学报, 2013, 32(4):701-707. http://mall.cnki.net/magazine/Article/NHBH201304008.htm

YI Longsheng, WANG Wenyan, TAO Ye, et al. Removing heavy metals in contaminated soil by the organic acids[J]. J Agro-Environ Sci, 2013, 32(4):701-707. http://mall.cnki.net/magazine/Article/NHBH201304008.htm
[12] DUQUÈNE L, VANDENHOVE H, TACK F, et al. Enhanced phytoextraction of uranium and selected heavy metals by Indian mustard and ryegrass using biodegradable soil amendments[J]. Sci Total Environ, 2009, 407(5):1496-1505. doi:  10.1016/j.scitotenv.2008.10.049
[13] CHEN Junren, SHAFI M, LI Song, et al. Copper induced oxidative stresses, antioxidant responses and phytoremediation potential of Moso bamboo (Phyllostachys pubescens)[J]. Sci Rep, 2015, 5(3):13554. https://www.readbyqxmd.com/read/25000580
[14] PENG Danli, SHAFI M, WANG Ying, et al. Effect of Zn stresses on physiology, growth, Zn accumulation, and chlorophyll of Phyllostachys pubescens[J]. Environ Sci Pollut Res, 2015, 22(19):14983-14992. doi:  10.1007/s11356-015-4692-3
[15] LIU Dan, ISLAM E, MA Junshan, et al. Optimization of chelator-assisted phytoextraction, using EDTA, lead and Sedum alfredii Hance as a model system[J]. Bull Environ Contam Toxicol, 2008, 81(1):30-35. doi:  10.1007/s00128-008-9445-2
[16] CHEN Junren, SHAFI M, WANG Ying, et al. Organic acid compounds in root exudation of moso bamboo (Phyllostachys pubescens) and its bioactivity as affected by heavy metals[J]. Environ Sci Pollut Res, 2016, 23(20):20977-20984. doi:  10.1007/s11356-016-7323-8
[17] WU L H, LUO Y M, CHRISTIE P, et al. Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil[J]. Chemosphere, 2003, 50(6):819-822. doi:  10.1016/S0045-6535(02)00225-4
[18] DOUMETT S, LAMPERI L, CHECCHINI L, et al. Heavy metal distribution between contaminated soil and Paulownia tomentosa, in a pilot-scale assisted phytoremediation study:influence of different complexing agents[J]. Chemosphere, 2008, 72(10):1481-1490. doi:  10.1016/j.chemosphere.2008.04.083
[19] 郭晓方, 卫泽斌, 吴启堂.乙二胺四乙酸在重金属污染土壤修复过程的降解及残留[J].农业工程学报, 2015, 31(7):272-278. http://www.cnki.com.cn/Article/CJFDTotal-NYGU201507038.htm

GUO Xiaofang, WEI Zebin, WU Qitang. Degradation and residue of EDTA used for soil repair in heavy metal-contaminated soil[J]. Trans Chin Soc Agric Eng, 2015, 31(7):272-278. http://www.cnki.com.cn/Article/CJFDTotal-NYGU201507038.htm
[20] 郑睿行, 张旭, 方芳, 等.高效液相色谱法测定酱腌菜制品中EDTA残留量[J].中国食品添加剂, 2011(2):212-219. https://wenku.baidu.com/view/708dc51314791711cc7917a1.html

ZHENG Ruihang, ZHANG Xu, FANG Fang, et al. Technical studies of detection method of EDTA residue in the pickled product[J]. China Food Add, 2011(2):212-219. https://wenku.baidu.com/view/708dc51314791711cc7917a1.html
[21] 简敏菲, 汪斯琛, 余厚平, 等. Cd2+, Cu2+胁迫对黑藻(Hydrilla verticillata)的生长及光合荧光特性的影响[J].生态学报, 2016, 36(6):1719-1727. http://www.ecologica.cn/stxb/ch/html/2016/6/stxb201408081588.htm

JIAN Minfei, WANG Sichen, YU Houping, et al. Influence of Cd2+ or Cu2+ stress on the growth and photosynthetic fluorescence characteristics of Hydrilla verticillata[J]. Acta Ecol Sin, 2016, 36(6):1719-1727. http://www.ecologica.cn/stxb/ch/html/2016/6/stxb201408081588.htm
[22] AZZARELLO E, PANDOLFI C, GIORDANO C, et al. Ultramorphological and physiological modifications induced by high zinc levels in Paulownia tomentosa[J]. Environ Exp Bot, 2012, 81(3):11-17. http://www.sciencedirect.com/science/article/pii/S0098847212000470
[23] 卫泽斌, 陈晓红, 吴启堂, 等.可生物降解螯合剂GLDA诱导东南景天修复重金属污染土壤的研究[J].环境科学, 2015, 36(5):1864-1869. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201505054.htm

WEI Zebin, CHEN Xiaohong, WU Qitang, et al. Enhanced phytoextraction of heavy metals from contaminated soils using Sedum alfredii Hance with biodegradable chelate GLDA[J]. Environ Sci, 2015, 36(5):1864-1869. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201505054.htm
[24] LEE J, SUNG K. Effects of chelates on soil microbial properties, plant growth and heavy metal accumulation in plants[J]. Ecol Eng, 2014, 73:386-394. doi:  10.1016/j.ecoleng.2014.09.053
[25] CAY S, UYANIK A, ENGIN M S, et al. Effect of EDTA and tannic acid on the removal of Cd, Ni, Pb and Cu from artificially contaminated soil by Althaea rosea Cavan[J]. Int J Phytoremed, 2015, 17(6):568-574. doi:  10.1080/15226514.2014.935285
[26] 吴龙华, 骆永明.铜污染土壤修复的有机调控研究(Ⅲ)EDTA和低分子量有机酸的效应[J].土壤学报, 2002, 39(5):679-685. doi:  10.11766/trxb200011240509

WU Longhua, LUO Yongming. Chelate-enhanced phytoremediation of copper polluted soil (Ⅲ) effect of EDTA and low molecule weight organic acids[J]. Acta Pedol Sin, 2002, 39(5):679-685. doi:  10.11766/trxb200011240509
[27] UDOVIC M, LESTAN D. Pb, Zn and Cd mobility, availability and fractionation in aged soil remediated by EDTA leaching[J]. Chemosphere, 2009, 74(10):1367-1373. doi:  10.1016/j.chemosphere.2008.11.013
[28] YLIVAINIO K. Effects of iron(Ⅲ)chelates on the solubility of heavy metals in calcareous soils[J]. Environ Pollut, 2010, 158(10):3194-3200. doi:  10.1016/j.envpol.2010.07.004
[29] 李燕丽, 李博文, 刘微, 等.有机酸淋洗对土壤Cd纵向迁移及有效性的影响[J].水土保持学报, 2011, 25(1):34-38. http://mall.cnki.net/magazine/Article/TRQS201101009.htm

LI Yanli, LI Bowen, LIU Wei, et al. Effects of soil leaching with organic acid on vertical movement and the availability of Cd in soil[J]. J Soil Water Conserv, 2011, 25(1):34-38. http://mall.cnki.net/magazine/Article/TRQS201101009.htm
[30] WU L H, LUO Y M, XING X R, et al. EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk[J]. Agric Ecosyst Environ, 2004, 102(3):307-318. doi:  10.1016/j.agee.2003.09.002
[31] SHAHID M, AUSTRUY A, ECHEVARRIA G, et al. EDTA-enhanced phytoremediation of heavy metals:a review[J]. Soil Sedim Contam Int J, 2014, 23(4):389-416. doi:  10.1080/15320383.2014.831029
[32] MEERS E, RUTTENS A, HOPGOOD M J, et al. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals[J]. Chemosphere, 2005, 58(8):1011-1022. doi:  10.1016/j.chemosphere.2004.09.047
[33] EVANGELOU M W H, EBEL M, SCHAEFFER A. Evaluation of the effect of small organic acids on phytoextraction of Cu and Pb from soil with tobacco Nicotiana tabacum[J]. Chemosphere, 2006, 63(6):996-1004. doi:  10.1016/j.chemosphere.2005.08.042