[1] 金重为, 邰瓞生, 尤纪雪. 天然耐腐木材的抗腐力及其在腐朽过程中化学成分的变化[J]. 林业科学, 1989, 25(5): 447 − 452.

JIN Zhongwei, TAI Diesheng, YOU Jixue. Decay resistance of natural durable species and the changes in amounts of major components during decay of wood by Coriolus versicolor and Gloeophyllum trabeum [J]. Sci Silv Sin, 1989, 25(5): 447 − 452.
[2] SCHULTZ T P, NICHOLAS D D, HENRY W P, et al. Review of laboratory and outdoor exposure efficacy results of organic biocide: antioxidant combinations, an initial economic analysis and discussion of a proposed mechanism [J]. Wood Sci Technol, 2005, 37: 175 − 184.
[3] 周妮, 齐锦, 王燕高, 等. 桢楠现代木和阴沉木精油化学成分的GC-MS分析[J]. 西北农林科技大学学报(自然科学版), 2015, 43(6): 136 − 140.

ZHOU Ni, QI Jin, WANG Yangao, et al. GC-MS analysis of chemical components of essential oils from recent and ancient buried Phoebe zhennan woods [J]. J Northwest A&F Univ Nat Sci Ed, 2015, 43(6): 136 − 140.
[4] 吴大荣, 朱政德. 福建省罗卜岩自然保护区闽楠种群结构和空间分布格局初步研究[J]. 林业科学, 2003, 39(1): 23 − 30.

WU Darong, ZHU Zhengde. Preliminary study on structure and spatial distribution pattern of Phoebe bournei in Luoboyan Nature Reserve in Fujian Province [J]. Sci Silv Sin, 2003, 39(1): 23 − 30.
[5] STIRLING R, MORRIS P I. Potential contributions of lignans to decay resistance in western red cedar [J]. Wood Sci Technol, 2016, 50: 399 − 412.
[6] 贾贤, 黄秋生, 刘光华, 等. 我国楠木资源的研究现状[J]. 中国园艺文摘, 2014, 30(10): 55 − 59.

JIA Xian, HUANG Qiusheng, LIU Guanghua, et al. Research status of Phoebe resources in China [J]. Chin Hortic Abstr, 2014, 30(10): 55 − 59.
[7] NAKATSUBO T, MIZUTANI M, SUZUKI S, et al. Characterization of Arabidopsis thaliana pinoresinol reductase, a new type of enzyme involved in lignan biosynthesis [J]. J Biol Chem, 2008, 283(23): 15550 − 15557.
[8] DINKOVA-KOSTOVA A T, GANG D R, DAVIN L B, et al. (+)-Pinoresinol/(+)-lariciresinol reductase from Forsythia intermedia [J]. J Biol Chem, 1996, 271(46): 29473 − 29482.
[9] CHU A, DINKOVA A, DAVIN L B, et al. Stereospecificity of (+)-pinoresinol and (+)-lariciresinol reductases from Forsythia intermedia [J]. J Biol Chem, 1993, 268(36): 27026 − 27033.
[10] XIAO Ying, JI Qian, GAO Shouhong, et al. Combined transcriptome and metabolite profiling reveals that IiPLR1 plays an important role in lariciresinol accumulation in Isatis indigotica [J]. J Exp Bot, 2015, 66(20): 6259 − 6271.
[11] von HEIMENDAHL C B I, SCHAFER K M, EKLUND P, et al. Pinoresinol-lariciresinol reductases with different stereo specificity from Linum album and Linum usitatissimum [J]. Phytochemistry, 2005, 66: 1254 − 1263.
[12] RENOUARD S, CORBIN C, LOPEZ T, et al. Abscisic acid regulates pinoresinol-lariciresinol reductase gene expression and secoisolariciresinol accumulation in developing fax (Linum usitatissimum L. ) seeds [J]. Planta, 2012, 235: 85 − 98.
[13] CORBIN C, RENOUARD S, LOPEZ T, et al. Identifcation and characterization of cis-acting elements involved in the regulation of ABA- and/or GA-mediated LuPLR1 gene expression and lignan biosynthesis in fax (Linum usitatissimum L. ) cell cultures [J]. J Plant Physiol, 2013, 170(5): 516 − 522.
[14] MIN T, KASAHARA H, BEDGAR D L, et al. Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isofavone reductases [J]. J Biol Chem, 2003, 278(50): 50714 − 50723.
[15] SUN Yanni, BUHLER J. Designing patterns and profiles for faster HMM search [J]. IEEE/ACM Trans Comput Biol Bioinform, 2009, 6(2): 232 − 243.
[16] LETUNIC I, BORK P. 20 years of the SMART protein domain annotation resource [J]. Nucleic Acids Res, 2018, 46: 493 − 496.
[17] HEMMATI S, SCHMIDT T J, FUSS E, et al. (+)-Pinoresinol/(−)-lariciresinol reductase from Linum perenne Himmelszelt involved in the biosynthesis of justicidin B [J]. FEBS Lett, 2007, 581: 603 − 610.
[18] RICKLEFS E, GIRHARD M, URLACHER V B. Three-steps in one-pot: whole-cell biocatalytic synthesis of enantiopure (+)- and (−)-pinoresinol via kinetic resolution[J/OL]. Microb Cell Fact. 2016, 15: 78[2022-01-20]. doi: 10.1186/s12934-016-0472-0.
[19] HANO C, MARTIN I, FLINIAUX O, et al. Pinoresinol-lariciresinol reductase gene expression and secoisolariciresinol diglucoside accumulation in developing fax (Linum usitatissimum) seeds [J]. Planta, 2006, 224: 1291 − 1301.
[20] HEMMATI S, von HEIMENDAHL C B I, KLAES M, et al. Pinoresinol-lariciresinol reductases with opposite enantiospecifcity determine the enantiomeric composition of lignans in the diferent organs of Linum usitatissimum L. [J]. Planta Med, 2010, 76: 928 − 934.
[21] CHIANG N T, MA Liting, LEE Y R, et al. The gene expression and enzymatic activity of pinoresinol-lariciresinol reductase during wood formation in Taiwania cryptomerioides Hayata [J]. Holzforschung, 2019, 73(2): 197 − 208.
[22] MOUMMOU H, KALLBERG Y, TONFACK L B, et al. The plant short-chain dehydrogenase (SDR) superfamily: genome-wide inventory and diversification patterns[J/OL]. BMC Plant Biol, 2012, 12: 219[2022-02-25]. doi: 10.1186/1471-2229-12-219.
[23] MARKULIN L, CORBIN C, RENOUARD S, et al. Pinoresinol-lariciresinol reductases, key to the lignan synthesis in plants [J]. Planta, 2019, 249(6): 1695 − 1714.
[24] FUJITA M, GANG D R, DAVIN L B, et al. Recombinant pinoresinol-lariciresinol reductases from western red cedar (Thuja plicata) catalyze opposite enantiospecific conversions [J]. J Biol Chem, 1999, 274: 618 − 627.
[25] CORBIN C, DROUET S, MATELJAK I, et al. Functional characterization of the pinoresinol-lariciresinol reductase-2 gene reveals its roles in yatein biosynthesis and fax defense response [J]. Planta, 2017, 243: 405 − 420.