[1] 张志明, 张征凯, 郭银明, 等.高原山区遥感植被制图研究综述[J].云南大学学报(自然科学版), 2013, 35(3):416-427. doi:  10.7540/j.ynu.20130188

ZHANG Zhiming, ZHANG Zhengkai, GUO Yinming, et al. Mountain vegetation mapping using remote sensing[J]. J Yunnan Univ, 2013, 35(3):416-427. doi:  10.7540/j.ynu.20130188
[2] VOISIN A, KRYLOV V A, MOSER G, et al. Supervised classification of multisensory and multiresolution remote sensing images with a hierarchical copula-based approach[J]. IEEE Trans Geosci Remote Sens, 2014, 52(6):3346-3358. doi:  10.1109/TGRS.2013.2272581
[3] 任冲, 鞠洪波, 张怀清, 等.多源数据林地类型的精细分类方法[J].林业科学, 2016, 52(6):54-65. doi:  10.3724/SP.J.1047.2015.01323

REN Chong, JU Hongbo, ZHANG Huaiqing, et al. Multi-source data for forest land type precise classification[J]. Sci Silv Sin, 2016, 52(6):54-65. doi:  10.3724/SP.J.1047.2015.01323
[4] 竞霞, 王锦地, 王纪华, 等.基于分区和多时相遥感数据的山区植被分类研究[J].遥感技术与应用, 2008, 23(4):394-397. doi:  10.11873/j.issn.1004-0323.2008.4.394

JING Xia, WANG Jindi, WANG Jihua, et al. Classifying forest vegetation using sub-region classification based on multi-temporal remote sensing images[J]. Remote Sens Technol Appl, 2008, 23(4):394-397. doi:  10.11873/j.issn.1004-0323.2008.4.394
[5] 温一博, 范文义.多时相遥感数据森林类型识别技术研究[J].森林工程, 2013, 29(2):14-20. http://www.cnki.com.cn/Article/CJFDTOTAL-SSGC201302002.htm

WEN Yibo, FAN Wenyi. Remote sensing image recognition for multi-temporal forest classification[J]. For Eng, 2013, 29(2):14-20. http://www.cnki.com.cn/Article/CJFDTOTAL-SSGC201302002.htm
[6] BENZ U C, HOFMANN P, WILLHAUCK G, et al. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information[J]. ISPRS J Photogramm Remote Sens, 2004, 58(3/4):239-258. http://adsabs.harvard.edu/abs/2004JPRS...58..239B
[7] FOODY G M, BOYD D S, SANCHEZ-HERNANDEZ C. Mapping a specific class with an ensemble of classifiers[J]. Int J Remote Sens, 2007, 28(8):1733-1746. doi:  10.1080/01431160600962566
[8] KITTLER J. Combining classifiers:a theoretical framework[J]. Pattern Anal Appl, 1998, 1(1):18-27. doi:  10.1007/BF01238023
[9] FREUND Y, SCHAPIRE R E. Experiments with a new boosting algorithm[C]//ICML96 Proceesings of the Thirteenth International Conference on International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers Inc, 1996: 148-156.
[10] MELVILLE P, MOONEY R J. Creating diversity in ensembles using artificial data[J]. Inf Fusion, 2005, 6(1):99-111. doi:  10.1016/j.inffus.2004.04.001
[11] HELMER E H, RUZYCKI T S, BENNER J, et al. Detailed maps of tropical forest types are within reach:forest tree communities for Trinidad and Tobago mapped with multi-season Landsat and multi-season fine-resolution imagery[J]. For Ecol Manage, 2012, 279(6):147-166. doi:  10.1016/j.foreco.2012.05.016
[12] 董心玉, 范文义, 田甜.基于面向对象的资源3号遥感影像森林分类研究[J].浙江农林大学学报, 2016, 33(5):816-825. doi:  10.11833/j.issn.2095-0756.2016.05.013

DONG Xinyu, FAN Wenyi, TIAN Tian. Object-based forest type classification with ZY-3 remote sensing data[J]. J Zhejiang A & F Univ, 2016, 33(5):816-825. doi:  10.11833/j.issn.2095-0756.2016.05.013
[13] 李明诗, 彭世揆, 周林, 等.基于ASTER数据的决策树自动构建及分类研究[J].国土资源遥感, 2006, 18(3):33-36, 42. doi:  10.6046/gtzyyg.2006.03.08

LI Mingshi, PENG Shikui, ZHOU Lin, et al. A study of automated construction and classification of decision tree classifiers based on ASTER remotely sensed datasets[J]. Remote Sens Land Resour, 2006, 18(3):33-36, 42. doi:  10.6046/gtzyyg.2006.03.08
[14] 齐红超, 祁元, 徐瑱.基于C5.0决策树算法的西北干旱区土地覆盖分类研究:以甘肃省武威市为例[J].遥感技术与应用, 2009, 24(5):648-653. doi:  10.11873/j.issn.1004-0323.2009.5.648

QI Hongchao, QI Yuan, XU Zhen, et al. The study of the northwest arid zone land-cover classification based on C5.0 decision tree algorithm at Wuwei City, Gansu Province[J]. J Remote Sens Technol Appl, 2009, 24(5):648-653. doi:  10.11873/j.issn.1004-0323.2009.5.648
[15] 高玉蓉, 许红卫, 丁晓东.基于C5.0的钱塘江流域地区土地利用/覆被信息提取研究[J].生态科学, 2012, 31(5):481-487. http://geoscien.neigae.ac.cn/article/2016/1560-8999/1560-8999-18-10-1384.shtml

GAO Yurong, XU Hongwei, DING Xiaodong. Extraction of land use/cover information based on C5.0 algorithm in Qiantang River drainage area[J]. Ecol Sci, 2012, 31(5):481-487. http://geoscien.neigae.ac.cn/article/2016/1560-8999/1560-8999-18-10-1384.shtml
[16] 李梦莹, 胡勇, 王征禹.基于C5.0决策树和时序HJ-1A/B CCD数据的神农架林区植被分类[J].长江流域资源与环境, 2016, 25(7):1070-1077. http://yangtzebasin.whlib.ac.cn/CN/Y2016/V25/I07/1070

LI Menying, HU Yong, WANG Zhengyu. Study on vegetation classification in Shennongjia forest district based on decision tree and HJ-1 A/B data[J]. Resour Environ Yangtze Basin, 2016, 25(7):1070-1077. http://yangtzebasin.whlib.ac.cn/CN/Y2016/V25/I07/1070
[17] KEMPENEERS P, SEDANO F, SEEBACH L, et al. Data fusion of different spatial resolution remote sensing images applied to forest-type mapping[J]. IEEE Trans Geosci Remote Sens, 2012, 49(12):4977-4986.
[18] 侯瑞萍, 黄国胜, 李应国, 等, LY/T 2188. 1-2013森林资源数据采集技术规范第1部分: 森林资源连续清查[S]. 北京: 中国标准出版社, 2014.
[19] 唐小平, 陈雪峰, 翁国庆, 等. GB/T 26424-2010森林资源规划设计调查技术规程[S]. 北京: 中国标准出版社, 2011.
[20] 王志慧, 李世明, 张艺伟.基于C5.0算法的森林资源变化检测方法研究:以山东省徂徕山林区为例[J].西北林学院学报, 2011, 26(5):185-191. http://d.wanfangdata.com.cn/Periodical/xblxyxb201105038

WANG Zhihui, LI Shiming, ZHANG Yiwei. Methodological study on the detection of the variations of forest resources based on C5.0 algorithm:a case of Culai Forest in Shandong[J]. J Northwest For Univ, 2011, 26(5):185-191. http://d.wanfangdata.com.cn/Periodical/xblxyxb201105038
[21] 崔宾阁, 马秀丹, 谢小云.小样本的高光谱图像降噪与分类[J].遥感学报, 2017, 21(5):728-738. https://www.researchgate.net/profile/Kaige_Yang/publication/280573106_Optimal_Subspaces_Ensemble_Method_for_Hyperspectral_Imagery_Classification/links/55bb335a08aed621de0aead5.pdf

CUI Binge, MA Xiudan, XIE Xiaoyun. Hyperspectral image de-noising and classification with small training samples[J]. J Remote Sens, 2017, 21(5):728-738. https://www.researchgate.net/profile/Kaige_Yang/publication/280573106_Optimal_Subspaces_Ensemble_Method_for_Hyperspectral_Imagery_Classification/links/55bb335a08aed621de0aead5.pdf
[22] 张晓羽, 李凤日, 甄贞, 等.基于随机森林模型的陆地卫星-8遥感影像森林植被分类[J].东北林业大学学报, 2016, 44(6):53-57. http://www.cqvip.com/QK/91092X/201606/669301659.html

ZHANG Xiaoyu, LI Fengri, ZHEN Zhen, et al. Forest vegetation classification of Landsat-8 remote sensing images based on random forests model[J]. J Northeast For Univ, 2016, 44(6):53-57. http://www.cqvip.com/QK/91092X/201606/669301659.html
[23] 董连英, 邢立新, 潘军, 等.高光谱图像植被类型的CART决策树分类[J].吉林大学学报(信息科学版), 2013, 31(1):83-89. http://www.cqvip.com/QK/97462A/201301/44891352.html

DONG Lianying, XING Lixin, PAN Jun, et al. Vegetation classification in hyperspectral image with CART decision tree[J]. J Jilin Univ Inf Sci Ed, 2013, 31(1):83-89. http://www.cqvip.com/QK/97462A/201301/44891352.html
[24] 赵英时.遥感应用分析与方法[M].北京:科学出版社, 2003:156-158.
[25] HARALICK R M. Statistical and structural approaches to texture[J]. Proc IEEE, 1979, 67(5):786-804. doi:  10.1109/PROC.1979.11328