[1] |
NICHOL J E, SARKER M L R. Improved biomass estimation using the texture parameters of two high-resolution optical sensors[J]. IEEE Trans Geosci Remote Sens, 2011, 49(3):930-948. |
[2] |
MENG Jinghui, LI Shiming, WANG Wei, et al. Estimation of forest structural diversity using the spectral and textural information derived from SPOT-5 satellite images[J]. Remote Sens, 2016, 8(2):125. |
[3] |
张超, 彭道黎, 涂云燕, 等.利用TM影像和偏最小二乘回归方法估测三峡库区森林蓄积量[J].北京林业大学学报, 2013, 35(3):11-17.
ZHANG Chao, PENG Daoli, TU Yunyan, et al. Predicting forest volume in Three Gorges Reservoir Region using TM images and partial least squares regression[J]. J Beijing For Univ, 2013, 35(3):11-17. |
[4] |
王海宾, 彭道黎, 范应龙, 等.基于辅助信息的森林蓄积量空间模拟[J].农业机械学报, 2016, 47(6):283-289.
WANG Haibin, PENG Daoli, FAN Yinglong, et al. Spatial modeling of forest stock volume based on auxiliary information[J]. Trans Chin Soc Agric Mach, 2016, 47(6):283-289. |
[5] |
亢新刚.森林资源经营管理[M].北京:中国林业出版社, 2001. |
[6] |
涂云燕.森林蓄积量遥感估测研究[D].北京: 北京林业大学, 2013.
TU Yunyan. The Research of Estimating Forest Volume Based on Remote Sensing[D]. Beijing: Beijing Forestry University, 2013. |
[7] |
CORONA P, FATTORINI L, FRANCESCHI S, et al. Mapping by spatial predictors exploiting remotely sensed and ground data:a comparative design-based perspective[J]. Remote Sens Environ, 2014, 152(1):29-37. |
[8] |
ZHENG Sheng, CAO Chunxiang, DANG Yongfeng, et al. Retrieval of forest growing stock volume by two different methods using Landsat TM images[J]. Int J Remote Sens, 2013, 35(1):29-43. |
[9] |
MORA B, WULDER M A, HOBART G W, et al. Forest inventory stand height estimates from very high spatial resolution satellite imagery calibrated with lidar plots[J]. Int J Remote Sens, 2013, 34(12):4406-4424. |
[10] |
陈尔学, 李增元, 武红敢, 等.基于k-NN和Landsat数据的小面积统计单元森林蓄积估测方法[J].林业科学研究, 2008, 21(6):745-750.
CHEN Erxue, LI Zengyuan, WU Honggan, et al. Forest volume estimation method for small areas based on k-NN and landsat data[J]. For Res, 2008, 21(6):745-750. |
[11] |
戚玉娇, 李凤日.基于k-NN方法的大兴安岭地区森林地上碳储量遥感估算[J].林业科学, 2015, 51(5):46-55.
QI Yujiao, LI Fengri. Remote sensing estimation of aboveground forest carbon storage in Daxing'an Mountains based on k-NN method[J]. Sci Silv Sin, 2015, 51(5):46-55. |
[12] |
郑刚, 彭世揆, 戎慧, 等.基于K-NN方法的森林蓄积量遥感估计和反演概述[J].遥感技术与应用, 2010, 25(3):431-437.
ZHENG Gang, PENG Shikui, RONG Hui, et al. A general introduction to estimation and retrieval of forest volume with remote sensing based on k-NN[J]. Remote Sens Technol Appl, 2010, 25(3):431-437. |
[13] |
曹庆先, 徐大平, 鞠洪波.基于TM影像纹理与光谱特征和k-NN方法估算5种红树林群落生物量[J].林业科学研究, 2011, 24(2):144-150.
CAO Qingxian, XU Daping, JU Hongbo. Biomass estimation of five kinds of mangrove community with the k-NN method based on the spectral information and textural features of TM images[J]. For Res, 2011, 24(2):144-150. |
[14] |
孔凡婕, 李晓兵, 白云晓, 等.基于GF-1 WFV影像的丰宁县植被地上碳储量估算[J].资源科学, 2016, 38(6):1054-1064.
KONG Fanjie, LI Xiaobing, BAI Yunxiao, et al. The estimation of aboveground vegetation carbon storage based on GF-1 WFV satellite images in Fengning County[J]. Resour Sci, 2016, 38(6):1054-1064. |
[15] |
李旭文, 季耿善, 杨静.太湖梅梁湖湾蓝藻生物量遥感估算[J].国土资源遥感, 1995, 7(2):23-28.
LI Xuwen, JI Gengshan, YANG Jing. Estimating cyanophyta biomass standing crops in Meiliang Gulf of Lake Taihu by satellite remote sensing[J]. Remote Sens Land Resour, 1995, 7(2):23-28. |
[16] |
ROUJEAN J L, BREON F M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements[J]. Remote Sens Environ, 1995, 51(3):375-384. |
[17] |
HUETE A R. A soil-adjusted vegetation index (SAVI)[J]. Remote Sens Environ, 1988, 25(3):295-309. |
[18] |
RONDEAUX G, STEVEN M, BARET F. Optimization of soil-adjusted vegetation indices[J]. Remote Sens Environ, 1996, 55:95-107. |
[19] |
ROUSE J W, HAAS R H, SCHELL J A, et al. Monitoring vegetation systems in the great plains with ERTS[M]//FREDEN S C, MERCANTI E P, BECKER M A. Third Earth Resources Technology Satellite-1 Symposium-Volume I: Technical Presentations(NASA SP-351). Washington D C: NASA Special Publication, 1974: 309. |
[20] |
GITELSON A A, KAUFMAN Y J, MERZLYAK M N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS[J]. Remote Sens Environ, 1996, 58(3):289-298. |
[21] |
ADAM E, MUTANGA O, RUGEGE D. Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation:a review[J]. Wetlands Ecol Manage, 2009, 18(3):281-296. |
[22] |
PEARSON R L, MILLER L D. Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie[J]. Remote Sens Environ, 1972, 45(2):7-12. |
[23] |
向安民, 刘凤伶, 于宝义, 等.基于k-NN方法和GF遥感影像的森林蓄积量估测[J].浙江农林大学学报, 2017, 34(3):406-412.
XIANG Anmin, LIU Fengling, YU Baoyi, et al. Forest stock volume estimation based on the k-NN method and GF remote sensing data[J]. J Zhejiang A&F Univ, 2017, 34(3):406-412. |
[24] |
徐小军, 周国模, 杜华强, 等.基于Landsat TM数据估算雷竹林地上生物量[J].林业科学, 2011, 47(9):1-6.
XU Xiaojun, ZHOU Guomo, DU Huaqiang, et al. Estimation of aboveground biomass of Phyllostachys praecox forest based on landsat thematic mapper image[J]. Sci Silv Sin, 2011, 47(9):1-6. |
[25] |
琚存勇, 邸雪颖, 蔡体久.变量筛选方法对郁闭度遥感估测模型的影响比较[J].林业科学, 2007, 43(12):33-38.
JU Cunyong, DI Xueying, CAI Tijiu. Comparing impact of two selecting variables methods on canopy closure estimation[J]. Sci Silv Sin, 2007, 43(12):33-38. |
[26] |
李崇贵, 赵宪文, 李春干.森林蓄积量遥感估测理论与实现[M].北京:科学出版社, 2006. |
[27] |
LI Xinchuan, ZHANG Youjing, BAO Yansong, et al. Exploring the best hyperspectral features for LAI estimation using partial least squares regression[J]. Remote Sens, 2014, 6(7):6221-6241. |
[28] |
JIN Xiuliang, MA Jianhang, WEN Zhidan, et al. Estimation of maize residue cover using Landsat-8 OLI image spectral information and textural features[J]. Remote Sens, 2015, 7(11):14559-14575. |
[29] |
王惠文, 吴载斌, 孟洁.偏最小二乘回归的线性与非线性方法[M].北京:国防工业出版社, 2006. |
[30] |
DU Huaqiang, ZHOU Guomo, GE Hongli, et al. Satellite-based carbon stock estimation for bamboo forest with a non-linear partial least square regression technique[J]. Int J Remote Sens, 2012, 33(6):1917-1933. |
[31] |
PETER T, WOLTER A PATA, BRIAN R, et al. Estimation of forest structural parameters using 5 and 10 meter SPOT-5 satellite data[J]. Remote Sens Environ, 2009, 113(9):2019-2036. |
[32] |
FRANCO-LOPEZ H, EK AvR, BAUER M E. Estimation and mapping of forest stand density, volume, and cover type using the k-nearest neighbors method[J]. Remote Sens Environ, 2011, 77(3):251-274. |
[33] |
KATILA M, TOMPPO E. Selecting estimation parameters for the finnish multisource National Forest Inventory[J]. Remote Sens Environ, 2001, 76(1):16-32. |
[34] |
MCROBERTS R E, TOMPPO E O, FINLEY A O, et al. Estimating areal means and variances of forest attributes using the k-Nearest Neighbors technique and satellite imagery[J]. Remote Sens Environ, 2007, 111(4):466-480. |
[35] |
KAJISA T, MURAKAMI T, MIZOUE N, et al. Estimation of stand volumes using the k-nearest neighbors method in Kyushu, Japan[J]. J For Res, 2008, 13(4):249-254. |
[36] |
CHIRICI G, MURA M, MCINERNEY D, et al. A meta-analysis and review of the literature on the k-nearest neighbors technique for forestry applications that use remotely sensed data[J]. Remote Sens Environ, 2016, 176(2):282-294. |
[37] |
KATILA M, TOMPPO E. Selecting estimation parameters for the finnish multisource National Forest Inventory[J]. Remote Sens Environ, 2001, 76(1):16-32. |