[1] WANG Yun, ZHANG Xinguo, ZHAO Yongli, et al. Insights into the novel members of the FAD2 gene family involved in high-oleate fluxes in peanut[J]. Genome, 2015, 58(8):375-383.
[2] WANG M L, CHEN C Y, DAVIS J, et al. Assessment of oil content and fatty acid composition variability in different peanut subspecies and botanical varieties[J]. Plant Genet Resour, 2009, 8(1):71-73.
[3] NAWADE B, BOSAMIA T C, THANKAPPAN R, et al. Insights into the Indian peanut genotypes for AhFAD2 gene polymorphism regulating its oleic and linoleic acid fluxes[J]. Front Plant Sci, 2016, 7:1271. doi:10.3389/fpls. 2016. 01277.
[4] WANG M L, KHERA P, PANDEY M K, et al. Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut (Arachis hypogaea L.)[J]. PLoS One, 2015, 10(4):e0119454. doi:10.1371/journal.pone. 0119454.
[5] 雷永.花生高油酸的分子遗传机制及其高效遗传改良体系构建[D].北京: 中国农业科学院, 2010.

LEI Yong. Molecular Mechanism and Genetic Enhancement Technology for High Oleic Acid in Peanut (Arachis hypogaea L.)[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010.
[6] LOPEZ Y, NADAF H L, SMITH O D, et al. Genetic factors influencing high oleic acid content in Spanish market type peanut cultivars[J]. Crop Sci, 2000, 41:51-56.
[7] CHI Xiaoyuan, YANG Qingli, PAN Lijuan, et al. Isolation and characterization of fatty acid desaturase genes from peanut (Arachis hypogaea L.)[J]. Plant Cell Rep, 2011, 30(8):1393-1404.
[8] YIN Dongmei, CUI Dangqun, JIA Bin. Construction of a high-efficient expression vector of Deltal 2 fatty acid desaturase in peanut and its prokaryotical expression[J]. Genet Genom, 2007, 34(1):81-88.
[9] 周丽侠, 唐桂英, 陈高, 等.花生AhFAD2基因的多态性及其与籽粒油酸/亚油酸比值间的相关性[J].作物学报, 2011, 37(3):415-423.

ZHOU Lixia, TANG Guiying, CHEN Gao, et al. Correlation between AhFAD2 polymorphism and oleic acid/linoleic acid ratio in peanut seeds[J]. Acta Agron Sin, 2011, 37(3):415-423.
[10] YU Shanlin, CHEN Mingna, YANG Qingli, et al. Cloning, characterization and expression analysis of a stearoyl-ACP desaturase gene from Arachis hypogaea L.[R]//IEEE. Proceedings of the 2nd International Conference on Biomedical Engineering and Informatics, Tianjin, 2009: 1-6.
[11] 殷冬梅, 胡晓峰, 张幸果, 等.不同油酸亚油酸比值花生品种油酸脱氢酶基因的时空表达特征[J].中国油料作物学报, 2013, 35(2):137-141.

YIN Dongmei, HU Xiaofeng, ZHANG Xingguo, et al. Temporal and spatial expression of oleate desaturase gene with different O/L values in peanut varieties[J]. Chin J Oil Crop Sci, 2013, 35(2):137-141.
[12] LOPEZ Y, NADAF H L, SMITH O D, et al. Isolation and characterization of the △12-fatty acid desaturase in peanut (Arachis hypogaea L.) and search for polymorphisms for the high oleate trait in Spanish market-type lines[J]. Theor Appl Genet, 2000, 101(7):1131-1138.
[13] BARKLEY N A, ISIEIB T G, WANG M L, et al. Genotypic effect of AhFAD2 on fatty acid profiles in six segregating peanut (Arachis hypogaea L.) populations[J]. Bmc Genet, 2013, 14(1):62.
[14] FANG Chaoqi, WANG Chuantang, WANG Piwu, et al. Identification of a novel mutation in FAD2B from a peanut EMS mutant with elevated oleate content[J]. J Oleo Sci, 2012, 61(3):143-148.
[15] JUNG S, POWELL G, MOORE K, et al. The high oleate trait in the cultivated peanut (Arachis hypogaea L.)(Ⅱ) Molecular basis and genetics of the trait[J]. Mol Gen Genet, 2000, 263(5):806-811.
[16] CHEN Zhenbang, WANG Mingli, BARKLEY N A, et al. A simple allele-specific PCR assay for detecting FAD2 Alleles in both A and B genomes of the cultivated peanut for high-oleate trait selection[J]. Plant Mol Biol Rep, 2010, 28(3):542-548.
[17] CHU Y, RAMOS L, HOLBROOK C C, et al. Frequency of a loss-of-function mutation in oleoyl-PC desaturase (AhFAD2A) in the mini-core of the US peanut germplasm collection[J]. Crop Sci, 2007, 47(6):2372-2378.
[18] NOELLEAB B, KELLYDCHENAULT C, WANG M L, et al. Development of a real-time PCR genotyping assay to identify high oleic acid peanuts (Arachis hypogaea L.)[J]. Mol Breed, 2010, 25(3):541-548.
[19] CHI Xiaoyuan, HU Ruibo, YANG Qingli, et al. Validation of reference genes for gene expression studies in peanut by quantitative real-time RT-PCR[J]. Mol Genet Genomics, 2012, 287(2):167-176.
[20] QUEHENBERGER O, ARMANDO A M, DENNIS E A. High sensitivity quantitative lipidomics analysis of fatty acids in biological samples by gas chromatography-mass spectrometry[J]. Biochim Et Biophysic Acta, 2011, 1811(11):648-656.
[21] VONGSVIVUT J, HERAUD P, ZHANG Wei, et al. Quantitative determination of fatty acid compositions in micro-encapsulated fish-oil supplements using Fourier transform infrared (FTIR) spectroscopy[J]. Food Chem, 2012, 135(2):603-609.
[22] 罗伟强.气相色谱法测定葵花籽油的脂肪酸[J].食品工业科技, 2003, 24(6):79-80.

LUO Weiqiang. Fatty acids of sunflower seed oil determined by gas chromatography[J]. Sci Technol Food Ind, 2003, 24(6):79-80.
[23] OHLROGGE J, BROWSE J. Lipid biosynthesis[J]. Plant Cell, 1995, 7(7):957-970.
[24] 陈四龙, 李玉荣, 徐桂真, 等.不同高油花生油分积累性的模拟研究[J].花生学报, 2016, 45(2):33-37.

CHEN Silong, LI Yurong, XU Guizhen, et al. Simulation on oil accumulation characteristics in different high-oil peanut varieties[J]. J Peanut Sci, 2016, 45(2):33-37.
[25] 迟晓元, 郝翠翠, 潘丽娟, 等.不同花生品种脂肪酸组成及积累规律的研究[J].花生学报, 2016, 45(3):32-36.

CHI Xiaoyuan, HAO Cuicui, PAN Liyuan, et al. Fatty acid accumulation pattern in different types of peanut[J]. J Peanut Sci, 2016, 45(3):32-36.