[1] ADAMS W W, DEMMIG-ADAMS B. Chlorophyll fluorescence as a tool to monitor plant response to the environment[C]//PAPAGEORGIOU G C, GOVINDJEE. Chlorophyll a Fluorescence: A Signature of Photosynthesis. Dordrecht Netherlands: Springer, 2004: 583-604.
[2] CARTER G A, KNAPP A K. Leaf optical properties in higher plants:linking spectral characteristics to stress and chlorophyll concentration[J]. Am J Bot, 2001, 88(4):677-684.
[3] WEN Kejia, LIANG Chanjuan, WANG Lihong, et al. Combined effects of lanthanumion and acid rain on growth, photosynthesis and chloroplast ultrastructure in soybean seedlings[J]. Chemosphere, 2011, 84(5):601-608.
[4] LIANG Chanjuan, GE Yuqing, SU Lei, et al. Response of plasma membrane H+-ATPase in rice (Oryza sativa) seedlings to simulated acid rain[J]. Environ Sci Pollut Res, 2015, 22(1):535-545.
[5] GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiol Biochem, 2010, 48(12):909-930.
[6] AHMAD P, JALEEL C A, SALEM M A, et al. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress[J]. Crit Rev Biotechnol, 2010, 30(3):161-175.
[7] BEZERRIL FONTENELE N M, OTOCH M D L O, GOMES-ROCHETTE N F, et al. Effect of lead on physiological and antioxidant responses in two Vigna unguiculata cultivars differing in Pb-accumulation[J]. Chemosphere, 2017, 176:397-404.
[8] GAJEWSKA E, SKŁODOWSKA M. Differential biochemical responses of wheat shoots and roots to nickel stress:antioxidative reactions and proline accumulation[J]. Plant Growth Regul, 2008, 54(2):179-188.
[9] JU Shuming, YIN Ningning, WANG Liping, et al. Effects of silicon on Oryza sativa L. seedling roots under simulated acid rain stress[J]. PLoS One, 2017, 12(3):e0173378. doi:10.1371/journal.pone.0173378.
[10] OHTO M, ONAI K, FURUKAWA Y, et al. Effects of sugar on vegetative development and floral transition in Arabidopsis[J]. Plant Physiol, 2001, 127(1):252-261.
[11] 李天红, 李绍华.水分胁迫对苹果苗非结构性碳水化合物组分及含量的影响[J].中国农学通报, 2002, 18(4):35-39.

LI Tianhong, LI Shaohua. Effects of water deficiency stresses on components and contents of the non-structured carbohydrates in the tissue-cultured apple seedlings[J]. Chin Agric Sci Bull, 2002, 18(4):35-39.
[12] BOLOURI-MOGHADDAM M R, ROY K L, XIANG L, et al. Sugar signalling and antioxidant network connections in plant cells[J]. Febs J, 2010, 277(9):2022-2037.
[13] 张新民, 柴发合, 王淑兰, 等.中国酸雨研究现状[J].环境科学研究, 2010, 23(5):527-532.

ZHANG Xinmin, CHAI Fahe, WANG Shulan, et al. Research progress of acid precipitation in China[J]. Res Environ Sci, 2010, 23(5):527-532.
[14] YOU Shijun. Improvement of China's Air Pollution (Sulphur Dioxide and Acid Rain) Control and Countermeasures by Introducing Emissions Trading System[D]. Vancouver: The University of British Columbia, 2010.
[15] ARNON D I. Copper enzymes in isolated chloroplasts. polyphenoloxidase in Beta vulgaris[J]. Plant Physiol, 1949, 24(1):1-15.
[16] LICHTENTHALER H K. Chlorophylls and carotenoids:pigments of photosynthetic biomembranes[J]. Methods Enzymol, 1987, 148(1):350-382.
[17] 李忠光, 龚明.植物中超氧阴离子自由基测定方法的改进[J].云南植物研究, 2005, 27(2):211-216.

LI Zhongguang, GONG Ming. Improvement of measurement method for superoxide anion radical in plant[J]. Acta Bot Yunnan, 2005, 27(2):211-216.
[18] CHANDRA R A, SINGH M, SHAH K. Effect of water withdrawal on formation of free radical, proline accumulation and activities of antioxidant enzymes in ZAT12-transformed transgenic tomato plants[J]. Plant Physiol Biochem, 2012, 61(4):108-114.
[19] HODGES D M, DELONG J M, FORNEY C F, et al. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds[J]. Planta, 1999, 207(4):604-611.
[20] KUMARI G J, REDDY A M, NAIK S T, et al. Jasmonic acid induced changes in protein pattern, antioxidative enzyme activities and peroxidase isozymes in peanut seedlings[J]. Biol Plant, 2006, 50(2):219-226.
[21] FUNK J L, CORNWELL W K. Leaf traits within communities:context may affect the mapping of traits to function[J]. Ecology, 2013, 94(9):1893-1897.
[22] 尹华军.增温对川西亚高山针叶林不同光环境下几种幼苗生长的影响[D].成都: 中国科学院研究生院, 2007.

YIN Huajun. Effects of Experimental Warming on Growth of Several Species Seedlings under Two Contrasting Light Conditions in Subalpine Coniferous Forest of Western Sichuan, China[D]. Chengdu: Graduate School of Chinese Academy of Sciences, 2007.
[23] FU Jinmin, HUANG Bingru. Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress[J]. Environ Exp Bot, 2001, 45(2):105-114.
[24] 王玉魁, 郭慧媛, 阎艳霞, 等.酸雨胁迫对毛竹叶片光合速率和叶绿素荧光参数的影响[J].生态环境学报, 2015, 24(9):1425-1433.

WANG Yukui, GUO Huiyuan, YAN Yanxia, et al. Effect of acid rain stress on photosynthetic rate and chlorophyll fluorescence parameters in leaves of Phyllostachys pubescens[J]. Ecol Environ Sci, 2015, 24(9):1425-1433.
[25] 邱栋梁, 刘星辉.模拟酸雨对龙眼叶绿体活性的影响[J].应用生态学报, 2002, 13(12):1559-1562.

QIU Dongliang, LIU Xinghui. Effects of simulated acid rain on chloroplast activity in Dimorcarpus longana Lour.cv. Wulongling leaves[J]. Chin J Appl Ecol, 2002, 13(12):1559-1562.
[26] OKTYABRSKY O N, SMIRNOVA G V. Redox regulation of cellular functions[J]. Biochem Biokhim, 2007, 72(2):132-145.
[27] 贾丽, 刘盟盟, 张洪芹, 等.冷蒿抗氧化防御系统对机械损伤的响应[J].浙江农林大学学报, 2016, 33(3):462-470.

JIA Li, LIU Mengmeng, ZHANG Hongqin, et al. Antioxidant defense system responses of Artemisia frigida to mechanical damage[J]. J Zhejiang A & F Univ, 2016, 33(3):462-470.
[28] LIU E U, LIU C P. Effects of simulated acid rain on the antioxidative system in Cinnamomum philippinense seedlings[J]. Water Air Soil Pollut, 2011, 215(1/4):127-135.
[29] 吴永波, 叶波.高温干旱复合胁迫对构树幼苗抗氧化酶活性和活性氧代谢的影响[J].生态学报, 2016, 36(2):403-410.

WU Yongbo, YE Bo. Effects of combined elevated temperature and drought stress on anti-oxidative enzyme activities and reactive oxygen species metabolism of Broussonetia papyrifera seedlings[J]. Acta Ecol Sin, 2016, 36(2):403-410.
[30] 赵栋, 潘远智, 邓仕槐, 等.模拟酸雨对茶梅生理生态特性的影响[J].中国农业科学, 2010, 43(15):3191-3198.

ZHAO Dong, PAN Yuanzhi, DENG Shihuai, et al. Effects of simulated acid rain on physiological and ecological characteristics of Camellia sasanqua[J]. Sci Agric Sin, 2010, 43(15):3191-3198.
[31] 牛远, 梁建萍, 张建达, 等.高温胁迫对华北落叶松幼苗抗氧化酶的影响[J].山西农业科学, 2008, 36(10):47-49.

NIU Yuan, LIANG Jianping, ZHANG Jianda, et al. Antioxidant enzymes response of Larix principis-rupprechtii seedlings under high temperature stress[J]. J Shanxi Agric Sci, 2008, 36(10):47-49.
[32] FOYER C H, NOCTOR G. Photosynthetic Nitrogen Assimilation:Inter-Pathway Control and Signaling[M]. Dordrecht Netherlands:Springer, 2002.
[33] COUÉE I, SULMON C, GOUESBET G, et al. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants[J]. J Exp Bot, 2006, 57(3):449-459.
[34] RUAN Yongling. Signaling role of sucrose metabolism in development[J]. Mol Plant, 2012, 5(4):763-765.
[35] 童贯和, 梁惠玲.模拟酸雨及其酸化土壤对小麦幼苗体内可溶性糖和含氮量的影响[J].应用生态学报, 2005, 16(8):1487-1492.

TONG Guanhe, LIANG Huiling. Effects of simulated acid rain and its acidified soil on soluble sugar and nitrogen contents of wheat seedlings[J]. Chin J Appl Ecol, 2005, 16(8):1487-1492.