[1] 孙山, 张立涛, 杨兴华, 等.板栗幼叶展叶过程的反射光谱和叶绿素荧光动力学[J].林业科学, 2009, 45(4):162-166.

SUN Shan, ZHANG Litao, YANG Xinghua, et al. Spectral reflectance and chlorophyll fluorescemce kinetics of young leaves at the various stages of leaf expansion in field-grown chestnut plants[J]. Sci Silv Sin, 2009, 45(4):162-166.
[2] 田野, 张会慧, 张秀丽, 等.紫丁香叶片发育过程中花色素苷含量与叶绿素荧光和激发能分配的关系[J].南京林业大学学报(自然科学版), 2014, 38(1):59-64.

TIAN Ye, ZHANG Huihui, ZHANG Xiuli, et al. The relationship between leaf anthocyanin content and chlorophyll fluorescence as well as excited energy distribution during leaf expansion of Syringa oblate Lindl.[J]. J Nanjing For Univ Nat Sci Ed, 2014, 38(1):59-64.
[3] 杨贤松.银杏叶片生长和衰老过程中叶绿体光合能力的变化及其叶绿素荧光动力学研究[D].南京: 南京师范大学, 2010.

YANG Xiansong. Changes of Chloroplast Photosynthetic Capacity and Chlorophyll Fluorescence Kinetics During Growth and Senescence of Ginkgo biloba Leaves[D]. Nanjing: Nanjing Normal University, 2010.
[4] 张汝民.绿豆幼苗脱黄化初期质体发育生理生化机制的研究[D].北京: 北京林业大学, 2005.

ZHANG Rumin. Study on Physiological and Biochemical Mechanism of Plastids During Early Stage of Seedling Deetiolation of Phaseolus radiates L.[D]. Beijing: Beijing Forestry University, 2005.
[5] 朱延姝, 于丽姣, 樊金娟, 等.玉米幼苗叶片叶绿素荧光参数变化规律研究[J].河南农业科学, 2011, 40(6):36-38.

ZHU Yanshu, YU Lijiao, FAN Jinjuan, et al. Characteristics of chlorophyll fluorescence parameters of leaves during leaf elongation of maize seedling[J]. J Henan Agric Sci, 2011, 40(6):36-38.
[6] 宋玉光, 马宗琪, 董蔚, 等.春季杨树叶片发育过程的研究[J].林业科技, 2016, 41(3):20-23.

SONG Yuguang, MA Zongqi, DONG Wei, et al. Study on the development process of Populus tomentosa leaf in spring[J]. For Sci Technol, 2016, 41(3):20-23.
[7] KATANI Z, ATIC L, FERHATOVIC D, et al. PSⅡ photochemistry in vegetative buds and needles of norway spruce (Picea abies L. Karst.) probed by OJIP chlorophyll a fluorescence measurement[J]. Acta Biol Hung, 2012, 63(2):218-230.
[8] 周国模, 刘恩斌, 施拥军, 等.基于最小尺度的浙江省毛竹生物量精确估算[J].林业科学, 2011, 47(1):1-5.

ZHOU Guomo, LIU Enbin, SHI Yongjun, et al. Accurate estimation for Phyllostachys edulis biomass in Zhejiang Province based on the lowest scale technique[J]. Sci Silv Sin, 2011, 47(1):1-5.
[9] 徐超, 温国胜, 王海湘, 等.毛竹快速生长期的高生长与碳通量的变化规律[J].东北林业大学学报, 2016, 44(11):1-4.

XU Chao, WEN Guosheng, WANG Haixiang, et al. Change rule of carbon flux and shoots high growth of Phyllostachys edulis during its fastgrowth stage[J]. J Northeast For Univ, 2016, 44(11):1-4.
[10] 施建敏, 郭起荣, 杨光耀.毛竹光合动态研究[J].林业科学研究, 2005, 18(5):551-555.

SHI Jianmin, GUO Qirong, YANG Guangyao. Study on the photosynthetic dynamic variation of Phyllostachys edulis[J]. For Res, 2005, 18(5):551-555.
[11] 杨丽, 娄永峰, 彭镇华, 等.毛竹、麻竹光合途径类型分析[J].南京林业大学学报(自然科学版), 2015, 39(5):169-173.

YANG Li, LOU Yongfeng, PENG Zhenhua, et al. A preliminary study on the type of photosynthetic pathway in Phyllostachys edulis and Dendrocalamus latiflorus[J]. J Nanjing For Univ Nat Sci Ed, 2015, 39(5):169-173.
[12] 温星, 程路芸, 李丹丹, 等.毛竹叶片发育过程中光合生理特性的变化特征[J].浙江农林大学学报, 2017, 34(3):437-442.

WEN Xing, CHENG Luyun, LI Dandan, et al. Photosynthetic characteristics in the development process of Phyllostachys edulis[J]. J Zhejiang A&F Univ, 2017, 34(3):437-442.
[13] 王星星, 刘琳, 张洁, 等.毛竹出笋后快速生长期内茎秆中光合色素和光合酶活性的变化[J].植物生态学报, 2012, 36(5):456-462.

WANG Xingxing, LIU Lin, ZHANG Jie, et al. Photosynthetic characteristics in the development process of Phyllostachys edulis[J]. Chin J Plant Ecol, 2012, 36(5):456-462.
[14] LICHTENTHALER H K. Chlorophylls and carotenoids:pigments of photosynthetic biomembranes[J]. Methods Enzymol, 1987, 148(1):350-382.
[15] STRASSERF R J, SRIVASTAVA A. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria[J]. Photochem Photobiol, 1995, 61(1):32-42.
[16] STRASSER R J, SRIVASTAVA A, TSIMILLI-MICHAEL M. The fluorescence transient as a tool to characterize and screen photosynthetic samples[C]//YUNUS M, PATHRE U, MOHANTY P, et al. Probing Photosynthesis: Mechanism, Regulation and Adaptation. London: Taylor and Francis Press, 2000: 445-483.
[17] 李鹏民, 高辉远, STRASSER R J.快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J].植物生理与分子生物学学报, 2005, 31(6):559-566.

LI Pengmin, GAO Huiyuan, STRASSER R J. Application of the chlorophyll fluorescence induction dynamics in photosynthesis study[J]. J Plant Physiol Mol Biol, 2005, 31(6):559-566.
[18] RICHARDSON A D, DUIGAN S P, BERLYN G P. An evaluation of noninvasive methods to estimate foliar chlorophyll content[J]. New Phytol, 2010, 153(1):185-194.
[19] 刘琳, 王玉魁, 王星星, 等.毛竹出笋后快速生长期茎秆色素含量与反射光谱的相关性[J].生态学报, 2013, 33(9):2703-2711.

LIU Lin, WANG Yukui, WANG Xingxing, et al. Correlation between pigment content and reflectance spectrum of Phyllostachys edulis stems during its rapid growth stage[J]. Acta Ecol Sin, 2013, 33(9):2703-2711.
[20] 陈登举, 高培军, 吴兴波, 等.毛竹茎秆叶绿体超微结构及其发射荧光光谱特征[J].植物学报, 2013, 48(6):635-642.

CHEN Dengju, GAO Peijun, WU Xingbo, et al. Ultrastructure of chloroplast and its emission fluorescence spectrum of Phyllostachys edulis stems[J]. Bull Bot, 2013, 48(6):635-642.
[21] STRASSER B J, STRASSER R J. Measuring fast fluorescence transients to address environmental questions, The JIP test//MATHIS P. Photosynthesis: From Light to Biosphere. Dordrecht: Kluwer Academy Publishers, 1995: 977-980.
[22] KRAUSE G H, WEIS E. Chlorophyll fluorescence and photosynthesis:the basics[J]. Annu Rev Plant Physiol Plant Mol Biol, 1991, 42:313-349.
[23] STRASSER R J, TSIMILLI-MICHAEL M, SRIVASTAVA A. Analysis of the fluorescence transient[C]//PAPAGEORGIOU G G. Chlorophyll A Fluorescence: A Signature of Photosynthesis, Advances in Photosynthesis and Respiration: vol 19. Dordrecht: Springer, 2004: 321-362.
[24] 张谧, 王慧娟, 于长青.超旱生植物沙冬青高温胁迫下的快速叶绿素荧光动力学特征[J].生态环境学报, 2009, 18(6):2272-2277.

ZHANG Mi, WANG Huijuan, YU Changqing. Rapid chlorophyll fluorescence kinetics under high temperature stress of the ultraxerophyte Ammopiptanthus mongolicus[J]. Ecol Environ Sci, 2009, 18(6):2272-2277.
[25] KALAJI H M, OUKARROUM A, ALEXANDROV V, et al. Identification of nutrient deficiency in maize and tomato plants by invivo chlorophyll a fluorescence measurements[J]. Plant Physiol Biochem, 2014, 81:16-25.
[26] 武海, 许大全.依赖叶黄素循环的非辐射能量耗散在防御珊瑚树叶片光抑制破坏中的作用[J].植物生理学报, 1993, 19(2):181-187.

WU Hai, XU Daquan. The role of nonradiative energy dissipation relying on the xanthophyll cycle in defending the photoinhibition damage of Viburnum odoratissinum leaves[J]. Plant Physiol J, 1993, 19(2):181-187.