[1] XIAO Huadong, SUN Jing, BIAN Xiaofeng, et al. GPU acceleration of the WSM6 cloud microphysics scheme in GRAPES model[J]. Comput Geosci, 2013, 59:156-162. doi:  10.1016/j.cageo.2013.06.016
[2] FOUNTOUKIS C, MARTÍN-POMARES L, PEREZ-ASTUDILLO D, et al. Simulating global horizontal irradiance in the Arabian Peninsula:sensitivity to explicit treatment of aerosols[J]. Sol Energ, 2018, 163:347-355. doi:  10.1016/j.solener.2018.02.001
[3] MOHR C, TAO Weikuo, CHERN J, et al. The NASA goddard multi-scale modeling framework-land information system:global land/atmosphere interaction with resolved convection[J]. Environ Modell Software, 2013, 39:103-115. doi:  10.1016/j.envsoft.2012.02.023
[4] DENG Tao, CHEN Yang, WAN Qilin, et al. Comparative evaluation of the impact of GRAPES and MM5 meteorology on CMAQ prediction over Pearl River Delta, China[J]. Particuology, 2018, 40:88-97. doi:  10.1016/j.partic.2017.10.005
[5] KISHNE A, YIMAN Y, MORGAN C, et al. Evaluation and improvement of the default soil hydraulic parameters for the Noah Land Surface Model[J]. Geoderma, 2017, 285:247-259. doi:  10.1016/j.geoderma.2016.09.022
[6] DONG Haotian, CAO Shuyang, TAKEMI T, et al. WRF simulation of surface wind in high latitudes[J]. J Wind Eng Ind Aerodyn, 2018, 179:287-296. doi:  10.1016/j.jweia.2018.06.009
[7] ZEPKA G S, PINTO O, SARAIVA A C V. Lightning forecasting in southeastern Brazil using the WRF model[J]. Atmos Res, 2014, 135/136:344-362. doi:  10.1016/j.atmosres.2013.01.008
[8] GUENTHER A, KARL T, HARLEY P, et al. Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature)[J]. Atmos Chem Phys, 2006, 6(11):3181-3210. doi:  10.5194/acp-6-3181-2006
[9] ZHANG Q, STREETS D G, CARMICHAEL G R, et al. Asian emissions in 2006 for the NASA INTEX-B mission[J]. Atmos Chem Phys, 2009, 9(14):5131-5153. doi:  10.5194/acp-9-5131-2009
[10] LI Meng, ZHANG Qiang, KUROKAWA J, et al. MIX:a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP[J]. Atmos Chem Phys, 2017, 17:935-963. doi:  10.5194/acp-17-935-2017
[11] HUANG Chuangfeng, CHEN Changhong, LI L, et al. The study of emission inventory of anthropogenic air pollutants and VOC species in the Yangtze River Delta region, China[J]. Atmos Chem Phys, 2011, 11(1):4105-4120. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_2228422e0c35bf2319390e739e293a2f
[12] LI Kangwei, CHEN Linghong, YING Fang, et al. Meteorological and chemical impacts on ozone formation:a case study in Hangzhou, China[J]. Atmos Res, 2017, 196(1):40-52.
[13] CARTER W P L. Development of ozone reactivity scales for volatile organic compounds[J]. Air Waste, 1994, 44(7):881-899. doi:  10.1080/1073161X.1994.10467290
[14] WANG Qiaoli, LI Sujing, DING Minli, et al. VOC emission characteristics and priority control analysis based on VOC emission inventories and ozone formation potentials in Zhoushan[J]. Atmos Environ, 2018, 182:234-241. doi:  10.1016/j.atmosenv.2018.03.034
[15] BOYLAN J, RUSSEL A. PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models[J]. Atmos Environ, 2006, 40(26):4946-4959. doi:  10.1016/j.atmosenv.2005.09.087
[16] CHO S, MORRIS R, MCEACHEM P, et al. Emission sources sensitivity study for ground-level ozone and PM2.5 due to oil sands development using air quality modeling system:part Ⅱ-source apportionment modeling[J]. Atmos Environ, 2012, 55:542-556. doi:  10.1016/j.atmosenv.2012.02.025