| [1] | 董斌, 陈立平, 王萍, 等.基于TM遥感影像的森林资源线性规划与优化配置研究[J].生态学报, 2012, 32(6):1943-1950. DONG Bin, CHEN Liping, WANG Ping, et al. Linear programming and optimal distribution of the forest resources based on TM remote sensing images[J]. Acta Ecol Sin, 2012, 32(6):1943-1950. |
| [2] | 任冲.中高分辨率遥感影像森林类型精细分类与森林资源变化监测技术研究[D].北京: 中国林业科学研究院, 2016. REN Chong. Forest Types Precise Classification and Forest Resources Change Monitoring Based on Medium and High Spatial Resolution Remote Sensing Images[D]. Beijing: Chinese Academy of Forestry, 2016. |
| [3] | 周小成, 庄海东, 陈铭潮, 等.面向小班对象的森林资源变化遥感监测方法:以福建省厦门市为例[J].资源科学, 2013, 35(8):1710-1718. ZHOU Xiaocheng, ZHUANG Haidong, CHEN Mingchao, et al. A method to extract forest cover change by object-oriented classification[J]. Resour Sci, 2013, 35(8):1710-1718. |
| [4] | 刘旭升, 张晓丽.森林植被遥感分类研究进展与对策[J].林业资源管理, 2004(1):61-64. LIU Xusheng, ZHANG Xiaoli. Research advances and countermeasures of remote sensing classification of forest vegetation[J]. For Resour Manage, 2004(1):61-64. |
| [5] | 池毓锋, 赖日文, 余莉莉, 等.基于Landsat 8 OLI数据的树种类型分布提取[J].自然资源学报, 2017, 32(7):1193-1203. CHI Yufeng, LAI Riwen, YU Lili, et al. Extracting tree species distribution with Landsat 8 OLI data[J]. J Nat Resour, 2017, 32(7):1193-1203. |
| [6] | 闫利, 江维薇.多光谱遥感影像植被覆盖分类研究进展[J].国土资源遥感, 2016, 28(2):8-13. YAN Li, JIANG Weiwei. Progress in the study of vegetation cover classification of multispectral remote sensing imagery[J]. Remote Sensing Land Resour, 2016, 28(2):8-13. |
| [7] | SRINIVASAN A, RICHARDS J A. Knowledge-based techniques for mufti-source classification[J]. Int J Remote Sensing, 1990, 11(3):505-525. |
| [8] | ACHARD F, ESTREGUIL C. Forest classification of southeast Asia using NOAA AVHRR data[J]. Remote Sensing Environ, 1995, 54(3):198-208. |
| [9] | FOODY G M, LUCAS R M, CURRAN P J, et al. Mapping tropical forest fractional cover from coarse spatial resolution remote sensing imagery[J]. Plant Ecol, 1997, 131(2):143-154. |
| [10] | MYINT S W, GOBER P, BRAZEL A, et al. Per-pixel vs object-based classification of urban land cover extraction using high spatial resolution imagery[J]. Remote Sensing Environ, 2011, 115(5):1145-1161. |
| [11] | MELGANI F, BRUZZONE L. Classification of hyperspectral remote sensing images with support vector machines[J]. IEEE Trans Geosci Remote Sensing, 2004, 42(8):1778-1790. |
| [12] | BAZI Y, MELGANI F. Toward an optimal SVM classification system for hyperspectral remote sensing images[J]. IEEE Trans Geosci Remote Sensing, 2006, 44(11):3374-3385. |
| [13] | LAWRENCE R S, WOOD S D, SHELEY R L. Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (random forest)[J]. Remote Sensing Environ, 2006, 100:356-362. |
| [14] | PAL M. Random forest classifier for remote sensing classification[J]. Int J Remote Sensing, 2005, 26(1):217-222. |
| [15] | ROGAN J, FRANKLIN J, ROBERTS A. A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper Imagery[J]. Remote Sensing Environ, 2002, 80(1):143-156. |
| [16] | 刘丹, 杨风暴, 卫红, 等.基于多分类器的C5.0决策树植被分类方法[J].图学学报, 2017, 38(5):722-728. LIU Dan, YANG Fengbao, WEI Hong, et al. Vegetation classification method based on C5.0 decision tree of multiple classifiers[J]. J Graphics, 2017, 38(5):722-728. |
| [17] | 韩婷婷, 习晓环, 王成, 等.基于决策树方法的云南省森林分类研究[J].遥感技术与应用, 2014, 29(5):744-751. HAN Tingting, XI Xiaohuan, WANG Cheng, et al. Study on forest classification in Yunnan based on decision tree algorithm[J]. Remote Sensing Technol Appl, 2014, 29(5):744-751. |
| [18] | BRUZZONE L, CARLIN L. A multilevel context-based system for classification of very high spatial resolution images[J]. IEEE Trans Geosci Remote Sensing, 2006, 44(9):2587-2600. |
| [19] | JOHANSEN K, COOPS N C, GERGEL S E, et al. Application of high spatial resolution satellite imagery for riparian and forest ecosystem classification[J]. Remote Sensing Environ, 2007, 310(1):29-44. |
| [20] | HLAVKA C A, HARALICK R M, CARLYLE S M, et al. The discrimination of winter wheat using a growth-state signature[J]. Remote Sensing Environ, 1980, 9(4):277-294. |
| [21] | 贾明明, 任春颖, 刘殿伟, 等.基于环境星与MODIS时序数据的面向对象森林植被分类[J].生态学报, 2014, 34(24):7167-7174. JIA Mingming, REN Chunying, LIU Dianwei, et al. Object-oriented forest classification based on combination of HJ-1 CCD and MODIS-NDVI data[J]. Acta Ecol Sin, 2014, 34(24):7167-7174. |
| [22] | PHIRI D, MORGENROTH J. Developments in Landsat Land Cover classification methods:a review[J]. Remote Sensing, 2017, 9(9):967. |
| [23] | 毕恺艺, 牛铮, 黄妮, 等.基于Sentinel-2A时序数据和面向对象决策树方法的植被识别[J].地理与地理信息科学, 2017, 33(5):16-20, 27, 127. BI Kaiyi, NIU Zheng, HUANG Ni, et al. Identifying vegetation with decision tree model based on object-oriented method using multi-temporal sentinel-2A images[J]. Geogr Geo-inf Sci, 2017, 33(5):16-20, 27, 127. |
| [24] | 曹霖, 彭道黎, 王雪军, 等.应用Sentinel-2A卫星光谱与纹理信息的森林蓄积量估算[J].东北林业大学学报, 2018, 46(9):54-58. CAO Lin, PENG Daoli, WANG Xuejun, et al. Estimation of forest stock volume with spectral and textural information from the Sentinel-2A[J]. J Northeast For Univ, 2018, 46(9):54-58. |
| [25] | 裴欢, 孙天娇, 王晓妍.基于Landsat 8 OLI影像纹理特征的面向对象土地利用/覆盖分类[J].农业工程学报, 2018, 34(2):248-255. PEI Huan, SUN Tianjiao, WANG Xiaoyan. Object-oriented land use/cover classification based on texture features of Landsat 8 OLI image[J]. Trans Chin Soc Agric Eng, 2018, 34(2):248-255. |
| [26] | 洪洲.基于纹理特征的遥感影像监督分类[J].测绘与空间地理信息, 2013, 36(4):75-79. HONG Zhou. The research on remote sensing supervised classification based on texture feature[J]. Geom Spat Inf Technol, 2013, 36(4):75-79. |