[1] |
李增元, 陈尔学, 高志海, 等.中国林业遥感技术与应用发展现状及建议[J].中国科学院院刊, 2013, 28(增刊1):132-144.
LI Zengyuan, CHEN Erxue, GAO Zhihai, et al. Current development status and proposals for national forest remote sensing techniques and applications[J]. Bull Chin Acad Sci, 2013, 28(suppl 1):132-144. |
[2] |
李德仁, 童庆禧, 李荣兴, 等.高分辨率对地观测的若干前沿科学问题[J].中国科学:地球科学, 2012, 42(6):805-813.
LI Deren, TONG Qingxi, LI Rongxing, et al. Current issues in high-resolution Earth observation technology[J]. Sci China Earth Sci, 2012, 55(7):1043-1051. |
[3] |
TIAN Xin, YAN Min, van der TOL C, et al. Modeling forest above-ground biomass dynamics using multi-source data and incorporated models:a case study over the Qilian mountains[J]. Agric For Meteorol, 2017, 246:1-14. |
[4] |
靳文戟, 刘政凯.多类别遥感图像的复合分类方法[J].环境遥感, 1995, 10(4):298-302.
JIN Wenji, LIU Zhengkai. A mixed classification method for multicategory remotely-sensed image recognition[J]. Remote Sensing Environ China, 1995, 10(4):298-302. |
[5] |
陈旭, 徐佐荣, 余世孝.基于对象的QuickBird遥感图像多层次森林分类[J].遥感技术与应用, 2009, 24(1):22-26.
CHEN Xu, XU Zuorong, YU Shixiao. Multi-level forest classification of QuickBird remote sensing image based on objects[J]. Remote Sensing Technol Appl, 2009, 24(1):22-26. |
[6] |
HARKEN J, SUGUMARAN R. Classification of Iowa wetlands using an airborne hyperspectral image:a comparison of the spectral angle mapper classifier and an object oriented approach[J]. Can J Remote Sensing, 2005, 31(2):167-174. |
[7] |
张淑芬, 邢艳秋, 艾合买提江·阿不都艾尼, 等.基于TM遥感影像的森林类型分类方法比较[J].森林工程, 2014, 30(1):18-21.
ZHANG Shufen, XING Yanqiu, Aihemaitijiang Abuduaini, et al. Comparison on forest type classification methods based on TM images[J]. For Eng, 2014, 30(1):18-21. |
[8] |
EITEL J U H, VIERLING L A, LITVAK M E, et al. Broadband, red-edge information from satellites improves early stress detection in a New Mexico conifer woodland[J]. Remote Sensing Environ, 2011, 115(12):3640-3646. |
[9] |
邱程锦.基于RapidEye影像的典型植被要素提取[D].北京: 中国矿业大学, 2014.
QIU Chengjin. Feature Extraction of Typical Vegetation Based on RapidEye Images[D]. Beijing: China University of Mining and Technology, 2014. |
[10] |
闫敏, 李增元, 陈尔学, 等.内蒙古大兴安岭根河森林保护区植被覆盖度变化[J].生态学杂志, 2016, 35(2):508-515.
YAN Min, LI Zengyuan, CHEN Erxue, et al. Vegetation fractional coverage change in Daxinganling Genhe forest reserve of Inner Mongolia[J]. Chin J Ecol, 2016, 35(2):508-515. |
[11] |
张兆鹏, 李增元, 李奇虎, 等.基于GF-1遥感影像的2013-2015年民勤绿洲植被覆盖动态变化分析[J].西南林业大学学报, 2017, 37(2):163-170.
ZHANG Zhaopeng, LI Zengyuan, LI Qihu, et al. Dynamic analysis on the vegetation coverage changes of Minqin Oasis based on GF-1 remote sensing image from 2013 to 2015[J]. J Southwest For Univ, 2017, 37(2):163-170. |
[12] |
任冲, 鞠洪波, 张怀清, 等.多源数据林地类型的精细分类方法[J].林业科学, 2016, 52(6):54-65.
REN Chong, JU Hongbo, ZHANG Huaiqing, et al. Multi-source data for forest land type precise classification[J]. Sci Silv Sin, 2016, 52(6):54-65. |
[13] |
van der LINDEN S, RABE A, HELD M, et al. The EnMAP-Box:a toolbox and application programming interface for EnMAP data processing[J]. Remote Sensing, 2015, 7(9):11249. doi:10.3390/rs70911249. |
[14] |
林海晏, 岳彩荣, 吴晓晖, 等.基于EnMAP-Box的遥感图像分类研究[J].西南林业大学学报, 2014, 34(2):67-71.
LIN Haiyan, YUE Cairong, WU Xiaohui, et al. Remote sensing image classification by EnMAP-Box model[J]. J Southwest For Univ, 2014, 34(2):67-71. |
[15] |
PLATT J C. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods[J]. Adv Large Margin Classif, 2000, 10(4):61-74. |
[16] |
CHANG Chihchung, LIN Chihjen. LIBSVM:a library for support vector machines[J]. ACM Transac Intell Syst Technol, 2011, 2(3):1-27. |
[17] |
王兴玲, 李占斌.基于网格搜索的支持向量机核函数参数的确定[J].中国海洋大学学报, 2005, 35(5):859-862.
WANG Xingling, LI Zhanbin. Identifying the parameters of the kernel function in support vector machines based on the grid-search method[J]. Period Ocean Univ China, 2005, 35(5):859-862. |
[18] |
王健峰, 张磊, 陈国兴, 等.基于改进的网格搜索法的SVM参数优化[J].应用科技, 2012, 39(3):28-31.
WANG Jianfeng, ZHANG Lei, CHEN Guoxing, et al. A parameter optimization method for an SVM based on improved grid search algorithm[J]. Appl Sci Technol, 2012, 39(3):28-31. |
[19] |
SVETNTIK K, LIAW A, TONG C, et al. Random forest:a classification and regression tool for compound classification and QSAR modeling[J]. J Chem Inf Comput Sci, 2003, 43(6):1947-1958. |
[20] |
WASKE B, van der LINDEN S, OLDENBURG C, et al. ImageRF:a user-oriented implementation for remote sensing image analysis with random forests[J]. Environ Model Software, 2012, 35:192-193. |
[21] |
YEH C H. Classification and regression trees (CART)[J]. Chemometrics Intell Libr Sys, 1991, 12(2):95-96. |
[22] |
QUINLAN J R. Induction of decision trees[J]. Mach Learn, 1986, 1(1):81-106. |
[23] |
张俊前, 王文进.基于交叉验证的遥感影像精细分类研究[J].城市勘测, 2016(2):88-92, 96.
ZHANG Junqian, WANG Wenjin. The research of remote sensing image fine classification base on cross validation[J]. Urban Geotech Investig Survey, 2016(2):88-92, 96. |
[24] |
BARLIN J N, ZHOU Qin, CLAIR C M S, et al. Classification and regression tree (CART) analysis of endometrial carcinoma:seeing the forest for the trees[J]. Gynecol Oncol, 2013, 130(3):452-456. |