[1] WOODWELL G M, WHITTAKER R H, REINERS W A, et al. The biota and the world carbon budget[J]. Science, 1978, 199(4325):141-146. doi:  10.1126/science.199.4325.141
[2] DIXON R K, BROWN S, HOUGHTON R A, et al. Carbon pools and flux of global forest ecosystems[J]. Science, 1994, 263(5144):185-190. doi:  10.1126/science.263.5144.185
[3] GOODALE C L, APPS M J, BIRDSEY R A, et al. Forest carbon sinks in the Northern Hemisphere[J]. Ecol Appl, 2002, 12(3):891-899. doi:  10.1890/1051-0761(2002)012[0891:FCSITN]2.0.CO;2
[4] HOUGHTON R A. Aboveground forest biomass and the global carbon balance[J]. Global Change Biol, 2005, 11(6):945-958. doi:  10.1111/j.1365-2486.2005.00955.x
[5] PAN Yude, BIRDSEY R A, FANG Jingyun, et al. A large and persistent carbon sink in the world's forests[J]. Science, 2011, 333(6045):988-993. doi:  10.1126/science.1201609
[6] FANG Jingyun, CHEN Anping, PENG Changhui, et al. Changes in forest biomass carbon storage in China between 1949 and 1998[J]. Science, 2001, 292(5525):2320-2322. doi:  10.1126/science.1058629
[7] JENKINS J C, CHOJNACKY D C, HEATH L S, et al. National-scale biomass estimators for United States tree species[J]. For Sci, 2003, 49(1):12-35. doi:  10.1046/j.1439-0329.2003.00307.x
[8] CASE B S, HALL R. Erratum:assessing prediction errors of generalized tree biomass and volume equations for the boreal forest region of west-central Canada[J]. Can J For Res, 2008, 38(4):878-889. doi:  10.1139/x07-212
[9] 骆期邦, 曾伟生, 贺东北, 等.立木地上部分生物量模型的建立及其应用研究[J].自然资源学报, 1999, 14(3):271-277. doi:  10.3321/j.issn:1000-3037.1999.03.013

LUO Qibang, ZENG Weisheng, HE Dongbei, et al. Establishment and application of compatible tree above-ground biomass models[J]. J Nat Resour, 1999, 14(3):271-277. doi:  10.3321/j.issn:1000-3037.1999.03.013
[10] 唐守正, 张会儒, 胥辉.相容性生物量模型的建立及其估计方法的研究[J].林业科学, 2000, 36(专刊1):19-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lykx2000Z1003

TANG Shouzheng, ZHANG Huiru, XU Hui. Study on establish and estimate method of compatible biomass model[J]. Sci Silv Sin, 2000, 36(spec 1):19-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lykx2000Z1003
[11] PARRESOL B R. Assessing tree and stand biomass:a review with examples and critical comparisons[J]. For Sci, 1999, 45(4):573-593. https://www.researchgate.net/publication/233590962_Assessing_Tree_and_Stand_Biomass_A_Review_with_Examples_and_Critical_Comparisons
[12] BI Huiqun, TURNER J, LAMBERT M J. Additive biomass equations for native eucalypt forest trees of temperate Australia[J]. Trees, 2004, 18(4):467-479. doi:  10.1007-s00468-004-0333-z/
[13] 罗云建, 王效科, 张小全, 等.华北落叶松人工林的生物量估算参数[J].林业科学, 2010, 46(2):6-11. http://d.old.wanfangdata.com.cn/Periodical/lykx201002002

LUO Yunjian, WANG Xiaoke, ZHANG Xiaoquan, et al. Biomass estimation factors of Larix principis-rupprechtii plantaions in northern China[J]. Sci Silv Sin, 2010, 46(2):6-11. http://d.old.wanfangdata.com.cn/Periodical/lykx201002002
[14] 曾伟生, 唐守正.立木生物量方程的优度评价和精度分析[J].林业科学, 2011, 47(11):106-113. doi:  10.11707/j.1001-7488.20111117

ZENG Weisheng, TANG Shouzheng. Goodness evaluation and precision analysis of tree biomass equations[J]. Sci Silv Sin, 2011, 47(11):106-113. doi:  10.11707/j.1001-7488.20111117
[15] 符利勇, 唐守正, 张会儒, 等.东北地区2个主要树种地上生物量通用方程构建[J].生态学报, 2015, 35(1):150-157. doi:  10.5846/stxb201403310601

FU Liyong, TANG Shouzheng, ZHANG Huiru, et al. Generalized above-ground biomass equations for two main species in northeast China[J]. Acta Ecol Sin, 2015, 35(1):150-157. doi:  10.5846/stxb201403310601
[16] 黄兴召, 孙晓梅, 张守攻, 等.辽东山区日本落叶松生物量相容性模型的研究[J].林业科学研究, 2014, 27(2):142-148. http://d.old.wanfangdata.com.cn/Periodical/lykxyj201402002

HUANG Xingzhao, SUN Xiaomei, ZHANG Shougong, et al. Compatible biomass models for Larix kaempferi in mountainous area of eastern Liaoning[J]. For Res, 2014, 27(2):142-148. http://d.old.wanfangdata.com.cn/Periodical/lykxyj201402002
[17] 臧颢.区域尺度气候敏感的落叶松人工林林分生长模型[D].北京: 中国林业科学研究院, 2016.

ZANG Hao. Regional-scal Climate-sensitive Stand Growth Models for Larch Plantations[D]. Beijing: Chinese Academy of Forestry, 2016.
[18] XIAO Xiao, WHITE E P, HOOTEN M B, et al. On the use of log-transformation vs. nonlinear regression for analyzing biological power laws[J]. Ecology, 2011, 92(10):1887-1894. doi:  10.1890/11-0538.1
[19] WEST G B, BROWN J H, ENQUIST B J. A general model for the structure and allometry of plant vascular systems[J]. Nature, 1999, 400(6745):664-667. doi:  10.1038/23251
[20] ZIANIS D, MENCUCCINI M. On simplifying allometric analyses of forest biomass[J]. For Ecol Manage, 2004, 187(2/3):311-332 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=61065f55ba64599a4c0a0cc7556a6c0e
[21] ZENG Weisheng, ZHANG Huiru, TANG Shouzheng. Using the dummy variable model approach to construct compatible single-tree biomass equations at different scales:a case study for masson pine (Pinus massoniana) in southern China[J]. Can J For Res, 2011, 41(7):1547-1554. doi:  10.1139/x11-068
[22] BAO H, KRALICEK K, POUDEL K P, et al. Allometric equations for estimating tree aboveground biomass in evergreen broadleaf forests of Viet Nam[J]. Forests, 2016, 7(8):193-205. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=79a10999642194fc2245bd6f6bcb7915
[23] CHEN Dongsheng, HUANG Xingzhao, ZHANG Shougong, et al. Biomass modeling of larch (Larix spp.) plantations in China based on the mixed model, dummy variable model, and bayesian hierarchical Model[J]. Forests, 2017, 8(8):268. doi: 10.3390/f8080268.
[24] 刘四海, 曾伟生.马尾松宏观尺度单木生长模型研究[J].林业资源管理, 2017(2):28-33. http://d.old.wanfangdata.com.cn/Periodical/lyzygl201702006

LIU Sihai, ZENG Weisheng. Large-scale individual tree growth models for Pinus massoniana in China[J]. For Resour Manage, 2017(2):28-33. http://d.old.wanfangdata.com.cn/Periodical/lyzygl201702006
[25] KETTERINGS Q M, COE R, van NOORDWIJK M, et al. Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests[J]. For Ecol Manage, 2001, 146(1/3):199-209. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b05786f8875a4a8da326ee4c2468a7ec
[26] 冉啟香, 邓华锋, 黄国胜, 等.云南松地上生物量模型研究[J].浙江农林大学学报, 2016, 33(4):605-611. doi:  10.11833/j.issn.2095-0756.2016.04.008

RAN Qixiang, DENG Huafeng, HUANG Guosheng, et al. An aboveground biomass model for Pinus yunnanensis[J]. J Zhejiang A&F Univ, 2016, 33(4):605-611. doi:  10.11833/j.issn.2095-0756.2016.04.008
[27] 吕常笑, 邓华锋, 王少杰, 等.马尾松不同区域相容性立木材积和地上生物量模型[J].浙江农林大学学报, 2016, 33(5):790-797. doi:  10.11833/j.issn.2095-0756.2016.05.010

LÜ Changxiao, DENG Huafeng, WANG Shaojie, et al. Compatible tree volume and aboveground biomass equations for Pinus massoniana from different regions[J]. J Zhejiang A&F Univ, 2016, 33(5):790-797. doi:  10.11833/j.issn.2095-0756.2016.05.010
[28] BROWN S L, SCHROEDER P, KERN J S. Spatial distribution of biomass in forests of the eastern USA[J]. For Ecol Manage, 1999, 123(1):81-90. doi:  10.1016/S0378-1127(99)00017-1
[29] MA Xiangqing, LIU Chunjiang, HANNU I, et al. Biomass, litterfall and the nutrient fluxes in Chinese fir stands of different age in subtropical China[J]. J For Res, 2002, 13(3):165-170. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lyyj200203001
[30] FU Liyong, LEI Xiangdong, HU Zongda, et al. Integrating regional climate change into allometric equations for estimating tree aboveground biomass of masson pine in China[J]. Ann For Sci, 2017, 74(2):42. doi: 10.1007/s13595-017-0636-z.
[31] BALBOA-MURIAS MÁ, RODRÍGUEZ-SOALLEIRO R, MERINO A, et al. Temporal variations and distribution of carbon stocks in aboveground biomass of radiata pine and maritime pine pure stands under different silvicultural alternatives[J]. For Ecol Manage, 2006, 237(1):29-38. doi:  10.1016-j.foreco.2006.09.024/
[32] BRANDEIS T J, DELANEY M, PARRESOL B R, et al. Development of equations for predicting Puerto Rican subtropical dry forest biomass and volume[J]. For Ecol Manage, 2006, 233(1):133-142. doi:  10.1016/j.foreco.2006.06.012
[33] DONG Lihu, ZHANG Lianjun, LI Fengri. A compatible system of biomass equations for three conifer species in Northeast, China[J]. For Ecol Manage, 2014, 329:306-317. doi:  10.1016/j.foreco.2014.05.050