[1] MCCLINTOCK B. Chromosome organization and genic expression[J]. Cold Spring Harb Symp Quant Biol, 1951, 16(2):13-47. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0217568496/
[2] 瞿绍洪, 张文俊, 景建康, 等.玉米转座因子Ac在单倍体烟草中转座的研究[J].遗传学报, 1998, 25(2):150-154. http://www.cnki.com.cn/Article/CJFDTotal-YCXB802.007.htm

QU Shaohong, ZHANG Wenjun, JING Jiankang, et al. Transposition behabior of the maize transposable element Ac in transgenic haploid tobacco[J]. Acta Gen Sin, 1998, 25(2):150-154.. http://www.cnki.com.cn/Article/CJFDTotal-YCXB802.007.htm
[3] 何承忠, 陈宝昆, 江涛, 等.植物转座子的研究与应用[J].西南农业学报, 2004, 17(3):399-403. doi:  10.3969/j.issn.1001-4829.2004.03.032

HE Chengzhong, CHEN Baokun, JIANG Tao, et al. Application and research on transposons of plants[J]. Southwest China J Agric Sci, 2004, 17(3):399-403. doi:  10.3969/j.issn.1001-4829.2004.03.032
[4] 程旭东, 凌宏清.植物基因组中的非LTR反转录转座子SINEs和LINEs[J].遗传, 2006, 28(6):731-736. doi:  10.3321/j.issn:0253-9772.2006.06.018

CHENG Xudong, LING Hongqing. Non-LTR retrotransposons:LINEs and SINEs in plant genome[J]. Hereditas, 2006, 28(6):731-736. doi:  10.3321/j.issn:0253-9772.2006.06.018
[5] WICKER T, TAUDIEN S, HOUBEN A, et al. A whole-genome snapshot of 454 sequences exposes the composition of the barley genome and provides evidence for parallel evolution of genome size in wheat and barley[J]. Plant J, 2009, 59(5):712-722. doi:  10.1111/j.1365-313X.2009.03911.x
[6] SCHNABLE P S, WARE D, FULTON R S, et al. The B73 maize genome:complexity, diversity and dynamics[J]. Science, 2009, 326(5956):1112-1115. doi:  10.1126/science.1178534
[7] 周敏, 汤定钦, 周明兵.一个毛竹典型LTR转座子的克隆、鉴定及进化分析[J].竹子研究汇刊, 2014, 33(3):1-10. doi:  10.3969/j.issn.1000-6567.2014.03.001

ZHOU Min, TANG Dingqin, ZHOU Mingbing. Cloning, characterization and phylogenetic analysis of a typical long terminal repeat retrotransposon in Phyllostachys heterocycla cv. pubescens[J]. J Bamboo Res, 2014, 33(3):1-10. doi:  10.3969/j.issn.1000-6567.2014.03.001
[8] EICKBUSH T H, JAMBURUTHUGODA V K. The diversity of retrotransposons and the properties of their reverse transcriptases[J]. Virus Res, 2008, 134(1/2):221-234. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bc815f661687107fe66154c3c040babd
[9] VITTE C, PANAUD O, QUESNEVILLE H. LTR retrotransposons in rice (Oryza sativa L.):recent burst amplifications followed by rapid DNA loss[J]. BMC Genomics, 2007, 8(1):218. doi: 10.1186/1471-2164/8/218.
[10] 梁琳琳, 周明兵.植物活性长末端重复序列反转录转座子研究进展[J].生物工程学报, 2016, 32(4):409-429. http://d.old.wanfangdata.com.cn/Periodical/swgcxb201604002

LIANG Linlin, ZHOU Mingbing. Plant active LTR retrotransposons:a review[J]. Chin J Biotechnol, 2016, 32(4):409-429. http://d.old.wanfangdata.com.cn/Periodical/swgcxb201604002
[11] LLORÉNS C, FUTAMI R, COVELLI L, et al. The Gypsy database (GyDB) of mobile genetic elements:release 2.0[J]. Nucleic Acids Res, 2011, 39(suppl 1):70-74. doi: 10.1093/nar/gkq1061.
[12] REY O, DANCHIN E, MIROUZE M, et al. Adaptation to global change:a transposable element-epigenetics perspective[J]. Trends Ecol Evol, 2016, 31(7):514-526. doi:  10.1016/j.tree.2016.03.013
[13] 徐玲, 杨静, 刘林, 等. 3个水稻逆转座子相关基因的逆境响应特征[J].植物病理学报, 2014, 44(2):147-155. http://www.cnki.com.cn/Article/CJFDTotal-ZWBL201402005.htm

XU Ling, YANG Jing, LIU Lin, et al. Stress responses of three retrotransposon-related genes in rice[J]. Acta Phytopathol Sin, 2014, 44(2):147-155. http://www.cnki.com.cn/Article/CJFDTotal-ZWBL201402005.htm
[14] 唐晓梅, 王艳, 马东伟, 等.干旱胁迫下高羊茅基因组甲基化分析[J].草业学报, 2015, 24(4):164-173. http://d.old.wanfangdata.com.cn/Periodical/caoyexb201504020

TANG Xiaomei, WANG Yan, MA Dongwei, et al. Analysis of DNA methylation of tall fescue in response to drought based on methylation-sensitive amplification polymorphism (MSAP)[J]. Acta Pratac Sin, 2015, 24(4):164-173. http://d.old.wanfangdata.com.cn/Periodical/caoyexb201504020
[15] DOMINGUES D S, CRUZ G M Q, METCALFE C J, et al. Analysis of plant LTR-retrotransposons at the fine-scale family level reveals individual molecular patterns[J]. BMC Genomics, 2012, 13(1):137. doi: 10.1186/1471-2164-13-137.
[16] PENG Zhenhua, LU Ying, LI Lubin, et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla)[J]. Nat Genet, 2013, 45(4):456-461. doi:  10.1038/ng.2569
[17] 李聪.冷胁迫下铁皮石斛转录组及Ty1-copia类反转录转座子表达分析[D].杭州: 浙江农林大学, 2014. http://xueshu.baidu.com/s?wd=paperuri%3A%2802ffd42e7ca8f2b25d7e638e302f02fb%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fcdmd.cnki.com.cn%2Farticle%2Fcdmd-10341-1015502407.htm&ie=utf-8&sc_us=5658588526918978966&sc_as_para=sc_lib%3A

LI Cong. Transcriptome of Dendrobium officinale under Cold Stress and Isolation and Expression Analysis of Ty1-copia Group Retrotransposons[D]. Hangzhou: Zhejiang A&F University, 2014. http://xueshu.baidu.com/s?wd=paperuri%3A%2802ffd42e7ca8f2b25d7e638e302f02fb%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fcdmd.cnki.com.cn%2Farticle%2Fcdmd-10341-1015502407.htm&ie=utf-8&sc_us=5658588526918978966&sc_as_para=sc_lib%3A
[18] 王丽丽, 赵韩生, 孙化雨, 等.毛竹miR397和miR1432的克隆及其逆境胁迫响应表达分析[J].林业科学, 2015, 51(6):63-70. http://d.old.wanfangdata.com.cn/Periodical/lykx201506008

WANG Lili, ZHAO Hansheng, SUN Huayu, et al. Cloning and expression analysis of miR397 and miR1432 in Phyllostachys edulis under stresses[J]. Sci Sil Sin, 2015, 51(6):63-70. http://d.old.wanfangdata.com.cn/Periodical/lykx201506008
[19] 何奇江, 李楠, 周文伟, 等.盐胁迫对雷竹叶绿素含量的影响[J].竹子研究汇刊, 2014, 33(2):58-62. doi:  10.3969/j.issn.1000-6567.2014.02.011

HE Qijiang, LI Nan, ZHOU Wenwei, et al. The response of chlorophyll content of Phyllostachys violascens to NaCl stress[J]. J Bamboo Res, 2014, 33(2):58-62. doi:  10.3969/j.issn.1000-6567.2014.02.011
[20] MURRAY M G, THOMPSON W F. Rapid isolation of high molecular weight plant DNA[J]. Nucl Acids Res, 1980, 8(19):4321-4325. doi:  10.1093/nar/8.19.4321
[21] 孙德权, 郭启高, 胡玉林, 等.改良Trizol法提取香蕉叶片总RNA[J].广东农业科学, 2009(5):162-164. http://d.old.wanfangdata.com.cn/Periodical/gdnykx200905055

SUN Dequan, GUO Qigao, HU Yulin, et al. Extraction of total RNA from banana with improved Trizol method[J]. Guangdong Agric Sci, 2009(5):162-164. http://d.old.wanfangdata.com.cn/Periodical/gdnykx200905055
[22] 齐飞艳, 胡陶, 彭镇华, 等.毛竹实时荧光定量PCR内参基因的筛选及成花基因PheTFL1表达分析[J].西北植物学报, 2013, 33(1):48-52. doi:  10.3969/j.issn.1000-4025.2013.01.010

QI Feiyan, HU Tao, PENG Zhenhua, et al. Screening of reference genes in qRT-PCR and expression analysis of PheTFL1 gene in moso bamboo[J]. Acta Bot Boreal-Occident Sin, 2013, 33(1):48-52. doi:  10.3969/j.issn.1000-4025.2013.01.010
[23] PFAFFL M W, LANGE I G, MEYER H H D. The gastrointestinal tract as target of steroid hormone action:quantification of steroid receptor mRNA expression (AR, ERα, ERβ and PR) in 10 bovine gastrointestinal tract compartments by kinetic RT-PCR[J]. J Steroid Biochem Mol Biol, 2003, 84(2):159-166. https://www.onacademic.com/detail/journal_1000035524402210_d1e4.html
[24] ELLINGHAUS D, KURTZ S, WILLHOEFT U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons[J]. BMC Bioinform, 2008, 9(1):18. doi: 10.1186/1471-2105-9-18.
[25] STEINBISS S, WILLHOEFT U, GREMME G, et al. Fine-grained annotation and classification of de novo predicted LTR retrotransposons[J]. Nucl Acids Res, 2009, 37(21):7002-7013. doi:  10.1093/nar/gkp759
[26] LI Weizhong, GODZIK A. Cd-hit:a fast program for clustering and comparing large sets of protein or nucleotide sequences[J]. Bioinformatics, 2006, 22(13):1658-1659. doi:  10.1093/bioinformatics/btl158
[27] KUMAR S, STECHER G, TAMURA K. MEGA7:molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets[J]. Mol Biol Evol, 2016, 33(7):1870-1874. doi:  10.1093/molbev/msw054
[28] FESCHOTTE C, JIANG Ning, WESSLER S R. Plant transposable elements:where genetics meets genomics[J]. Nat Rev Genet, 2002, 3(5):329-341. doi:  10.1038/nrg793
[29] MA Jianxin, JACKSON S A. Retrotransposon accumulation and satellite amplification mediated by segmental duplication facilitate centromere expansion in rice[J]. Genome Res, 2006, 16(2):251-259. doi:  10.1101-gr.5383506/
[30] LESCOT M, DÉHAIS P, THIJS G, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucl Acids Res, 2002, 30(1):325-327. doi:  10.1093/nar/30.1.325
[31] TAMURA K, PETERSON D, PETERSON N, et al. MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Mol Biol Evol, 2011, 28(10):2731-2739. doi:  10.1093/molbev/msr121
[32] 虞洪杰.植物LTR反转录转座子的预测和注释及邻聚法构建系统进化树研究[D].杭州: 浙江大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10335-1012338330.htm

YU Hongjie. Prediction and Annotation of LTR Retrotransposons in Plant and a New Method to Construct Phylogenetic Trees[D]. Hangzhou: Zhejiang University, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10335-1012338330.htm
[33] 闫红飞.小麦抗叶锈基因Lr38, Lr45分子标记及抗病相关分析[D].保定: 河北农业大学, 2009. http://cdmd.cnki.com.cn/Article/CDMD-11920-2009184995.htm

YAN Hongfei. Molecular Markers for Lr38, Lr45 and Their Resistance-related Analysis Agains Wheat Leaf Rust[D]. Baoding: Hebei Agricultural University, 2009. http://cdmd.cnki.com.cn/Article/CDMD-11920-2009184995.htm
[34] 宋程威, 郭大龙, 张曦, 等.牡丹LINE类反转录转座子RT序列的克隆及分析[J].园艺学报, 2014, 41(1):157-164. doi:  10.3969/j.issn.0513-353X.2014.01.018

SONG Chengwei, GUO Dalong, ZHANG Xi, et al. Cloning and analysis of reverse transcriptase of LINE-retrotransposons of tree peony (Paeonia)[J]. Acta Hortic Sin, 2014, 41(1):157-164. doi:  10.3969/j.issn.0513-353X.2014.01.018
[35] RICO-CABANAS L, MARTÍ NEZ-IZQUIERDO J A. CIRE1, a novel transcriptionally active Ty1-copia retrotransposon from Citrus sinensis[J]. Mol Genet Genom, 2007, 277(4):365-377. doi:  10.1007/s00438-006-0200-2
[36] 刘秋香. DNA甲基化酶抑制剂5-Aza-2'-deoxycytidine处理后水稻的DNA甲基化研究[D].杭州: 浙江大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10335-1015446728.htm

LIU Qiuxiang. DNA Methylation Research of Oryza sativa (Nipponbare) after Treated with 5-Aza-2'-deoxycytidine[D]. Hangzhou: Zhejiang University, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10335-1015446728.htm
[37] 陈建军, 王瑛.植物基因组大小进化的研究进展[J].遗传, 2009, 31(5):464-470. http://d.old.wanfangdata.com.cn/Periodical/yc200905004

CHEN Jianjun, WANG Ying. Recent progress in plant genome size evolution[J]. Hereditas, 2009, 31(5):464-470. http://d.old.wanfangdata.com.cn/Periodical/yc200905004
[38] MIURA Y, CHIBA T, TOMITA I, et al. Tea catechins prevent the development of atherosclerosis in apoprotein E-deficient mice[J]. J Nutr, 2001, 131(1):27-32. doi:  10.1093/jn/131.1.27
[39] BEGUIRISTAIN T, GRANDBASTIEN M A, PUIGDOMÈNECH P, et al. Three Tnt1 subfamilies show different stress-associated patterns of expression in tobacco. Consequences for retrotransposon control and evolution in plants[J]. Plant Physiol, 2001, 127(1):212-221. doi:  10.1104/pp.127.1.212
[40] LISCH D. How important are transposons for plant evolution?[J]. Nat Rev Genet, 2013, 14(1):49-61. https://www.ncbi.nlm.nih.gov/pubmed/23247435
[41] 应叶青, 郭璟, 魏建芬, 等.水分胁迫下毛竹幼苗光合及叶绿素荧光特性的响应[J].北京林业大学学报, 2009, 31(6):128-133. http://d.old.wanfangdata.com.cn/Periodical/bjlydxxb200906023

YING Yeqing, GUO Jing, WEI Jianfen, et al. Photosynthetic and chlorophyll fluorescent responses of Phyllostachys pubescens seedlings to water deficiency stress[J]. J Beijing For Univ, 2009, 31(6):128-133. http://d.old.wanfangdata.com.cn/Periodical/bjlydxxb200906023
[42] 孟昱.盐胁迫对毛竹实生苗叶片电阻抗参数及叶绿素荧光特性的影响[D].保定: 河北农业大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-11920-2010139183.htm

MENG Yu. Effects of NaCl Stress on Electrical Impedance Spectroscopy Parameters and Chlorophyll Fluorescence Characteristics of Moso Bamboo(Phyllostachys edulis) Seedling Leaves[D]. Baoding: Hebei Agricultural University, 2010. http://cdmd.cnki.com.cn/Article/CDMD-11920-2010139183.htm