[1] YU Qin, SHEN Yamei, WANG Qianying, et al. Light deficiency and waterlogging affect chlorophyll metabolism and photosynthesis in Magnolia sinostellata [J]. Trees, 2019, 33(1): 11 − 22.
[2] 俞芹, 王倩颖, 刘志高, 等. 光强与水分处理下景宁木兰光合光响应模型拟合比较[J]. 生态学杂志, 2018, 37(3): 898 − 905.

YU Qin, WANG Qianying, LIU Zhigao, et al. Comparison of the light response models of photosynthesis in leaves of Magnolia sinostellata under different light intensity and moisture conditions [J]. Chin J Ecol, 2018, 37(3): 898 − 905.
[3] TAMAKI I, NOMURA K, NOMURA R, et al. Evaluation of a field experiment for the conservation of a Magnolia stellata stand using clear-cutting [J]. Landscape Ecol Eng, 2018, 14(2): 269 − 276.
[4] 余泽智, 陈翔翔, 卢璐, 等. 玉景宁玉兰种群分布与群落结构研究[J]. 浙江林业科技, 2015, 35(3): 47 − 52.

YU Zezhi, CHEN Xiangxiang, LU Lu, et al. Distribution and community structure ofMagnolia sinostellata [J]. J Zhejiang For Sci Technol, 2015, 35(3): 47 − 52.
[5] TOLEDO-ORTIZ G, HUQ E, QUAIL P H. The Arabidopsis basic/helix-loop-helix transcription factor family [J]. Plant Cell, 2003, 15(8): 1749 − 1770.
[6] CASTILLON A, SHEN Hui, HUQ E. Phytochrome interacting factors: central players in phytochrome-mediated light signaling networks [J]. Trends Plant Sci, 2007, 12(11): 514 − 521.
[7] SONG Yi, YANG Chuangwei, GAO Shan, et al. Age-triggered and dark-induced leaf senescence require the bHLH transcription factors PIF3, 4, and 5 [J]. Mol Plant, 2014, 7(12): 1776 − 1787.
[8] CAPELLA M, RIBONE P A, ARCE A L, et al. Arabidopsis thaliana HomeoBox 1 (AtHB1), a homedomain-leucine zipper I (HD-Zip I) transcription factor, is regulated by PHYTOCHROME-INTERACTING FACTOR 1 to promote hypocotyl elongation [J]. New Phytol, 2015, 207(3): 669 − 682.
[9] GALVĀO V C, FIORUCCI A S, TREVISAN M, et al. PIF transcription factors link a neighbor threat cue to accelerated reproduction in Arabidopsis[J]. Nat Commun, 2019, 10(1): 4005. doi: 10.1038/s41467-019-11882-7.
[10] EUNKYOO O, ZHU Jiaying, BAI Mingyi, et al. Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl[J]. eLife, 2014, 3: e03031. doi: 10.7554/eLife.03031.
[11] HASAN M, RASHID M, KHATUN S, et al. Computational identification of microbial phosphorylation sites by the enhanced characteristics of sequence information [J]. Sci Rep, 2019, 9: 8258. doi: 10.1038/s41598-019-44548-x.
[12] 陈亮, 崔芬芬, 王勇飞, 等. 基于转录组金银花WRKY转录因子的挖掘与分析[J]. 分子植物育种, 2019, 17(6): 1780 − 1787.

CHEN Liang, CUI Fenfen, WANG Yongfei, et al. Mining and analysis of WRKY transcription factors in transcriptome-based Lonicera japonica [J]. Mol Plant Breed, 2019, 17(6): 1780 − 1787.
[13] ESSER D, HOFFMANN L, PHAM T K, et al. Protein phosphorylation and its role in archaeal signal transduction [J]. FEMS Microbiol Rev, 2016, 40(5): 625 − 647.
[14] PHAM V N, KATHARE P K, HUQ E. Phytochromes and phytochrome interacting factors [J]. Plant Physiol, 2018, 176(2): 1025 − 1038.
[15] HUANG Xu, ZHANG Qian, JIANG Yupei, et al. Shade-induced nuclear localization of PIF7 is regulated by phosphorylation and 14-3-3 proteins in Arabidopsis[J]. eLife, 2018, 7: e31636. doi: 10.7554/eLife.31636.
[16] 庄黎丽, 王剑, 杨志民. 基于转录组数据库的高羊茅HD-Zip I转录因子的鉴定及表达模式解析[J]. 草业学报, 2017, 27(3): 67 − 77.

ZHUANG Lili, WANG Jian, YANG Zhimin. Transcriptome-wide identification and expression analysis of HD-Zip I transcription factors in Festuca arundinacea [J]. Acta Prat Sin, 2017, 27(3): 67 − 77.
[17] 徐向东, 任逸秋, 张利, 等. 杨树PIF基因家族成员表达模式研究[J]. 林业科学研究, 2018, 31(2): 19 − 25.

XU Xiangdong, REN Yiqiu, ZHANG Li, et al. Analysis of expression pattern of PIF family members in Populus [J]. For Res, 2018, 31(2): 19 − 25.
[18] GAO Yong, REN Xiaoyun, QIAN Jingjie, et al. The phytochrome-interacting family of transcription factors in maize (Zea mays L.): identification, evolution, and expression analysis[J]. Acta Physiol Plant, 2019, 41(1): 8. doi: 10.1007/s11738-018-2802-9.
[19] NAKAMURA Y, KATO T, YAMASHINO T, et al. Characterization of a set of phytochrome-interacting factor-like bHLH proteins in Oryza sativa [J]. Biosci Biotechnol Biochem, 2007, 71(5): 1183 − 1191.
[20] MONTE E, TEPPERMAN J M, AL-SADY B, et al. The phytochrome-interacting transcription factor, PIF3, acts early, selectively, and positively in light-induced chloroplast development [J]. Proc Natl Acad Sci USA, 2004, 101(46): 16091 − 16098.
[21] KUMAR S V, LUCYSHYN D, JAEGER K E, et al. Transcription factor PIF4 controls the thermosensory activation of flowering [J]. Nature, 2012, 484(7393): 242 − 245.
[22] LEIVAR P, MONTE E, AL-SADY B, et al. The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels [J]. Plant Cell, 2008, 20(2): 337 − 352.
[23] OH J, PARK E, SONG K, et al. PHYTOCHROME INTERACTING FACTOR8 Inhibits phytochrome a-mediated far-red light responses in Arabidopsis [J]. Plant Cell, 2020, 32(1): 186 − 205.
[24] PENFIELD S, JOSSE E M, KANNANGARA R, et al. Cold and light control seed germination through the bHLH transcription factor SPATULA [J]. Curr Biol, 2005, 15(22): 1998 − 2006.
[25] REYES-OLALDE J I, ZÚÑIGA-MAYO V M, SERWATOWSKA J, et al. The bHLH transcription factor SPATULA enables cytokinin signaling, and both activate auxin biosynthesis and transport genes at the medial domain of the gynoecium [J]. PLoS Genet, 2017, 13(4): e1006726. doi: 10.1371/journal.pgen.1006726.
[26] GROSZMANN M, PAICU T, SMYTH D R. Functional domains of SPATULA, a bHLH transcription factor involved in carpel and fruit development in Arabidopsis [J]. Plant J, 2008, 55(1): 40 − 52.
[27] LU Deliang, WANG G G, ZHANG Jinxin, et al. Converting larch plantations to mixed stands: effects of canopy treatment on the survival and growth of planted seedlings with contrasting shade tolerance [J]. For Ecol Manage, 2018, 409: 19 − 28.
[28] DONG Jie, SUN Ning, YANG Jing, et al. The transcription factors TCP4 and PIF3 antagonistically regulate organ-specific light induction of SAUR genes to modulate cotyledon opening during de-etiolation inArabidopsis [J]. Plant Cell, 2019, 31(5): 1155 − 1170.
[29] OH E, YAMAGUCHI S, HU Jianhong, et al. PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds [J]. Plant Cell, 2007, 19(4): 1192 − 1208.
[30] OH E, ZHU Jiaying, WANG Zhiyong. Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses [J]. Nat Cell Biol, 2012, 14(8): 802 − 809.
[31] PARK E, PARK J, KIM J, et al. Phytochrome B inhibits binding of phytochrome-interacting factors to their target promoters [J]. Plant J, 2012, 72(4): 537 − 546.
[32] 任小芸, 吴美琴, 陈建民, 等. 光敏色素作用因子PIFs参与植物激素信号转导的分子机制[J]. 植物生理学报, 2016, 52(10): 1466 − 1473.

REN Xiaoyun, WU Meiqin, CHEN Jianmin, et al. The molecular mechanisms of phytochrome interacting factors (PIFs) in phy-tohormone signaling transduction [J]. Plant Physiol Commun, 2016, 52(10): 1466 − 1473.