[1] |
王广艳, 杨永平. 天门冬科沿阶草族植物的系统学研究进展[J]. 植物分类与资源学报, 2015, 37(4): 365 − 375.
WANG Guangyan, YANG Yongping. Advances in the study of the systematics of Ophiopogoneae in Asparagaceae [J]. Plant Diversity Resour, 2015, 37(4): 365 − 375. |
[2] |
LIU Ying, TIKUNOV Y, SCHOUTEN R E, et al. Anthocyanin biosynthesis and degradation mechanisms in solanaceous vegetables: a review [J/OL]. Front Chem, 2018, 6: 52[2021-02-18]. doi: 10.3389/fchem.2018.00052. |
[3] |
DEGUCHI A, TATSUZAWA F, MIYOSHI K. A blackish-flowered cultivar of Catharanthus roseus accumulates high concentrations of a novel anthocyanin with a unique feature of aggregation in weak acid solutions[J/OL]. Dyes Pigm, 2020, 173: 108001[2021-03-01]. doi: 10.1016/j.dyepig.2019.108001. |
[4] |
CACERES-MELLA A, TALAVERANO M I, VILLALOBOS-GONZALEZ L, et al. Controlled water deficit during ripening affects proanthocyanidin synthesis, concentration and composition in Cabernet Sauvignon grape skins [J]. Plant Physiol Biochem, 2017, 117: 34 − 41. |
[5] |
WANG Yuwei, LUAN Guangxiang, ZHOU Wu, et al. Subcritical water extraction, UPLC-Triple-TOF/MS analysis and antioxidant activity of anthocyanins from Lycium ruthenicum Murr. [J]. Food Chem, 2018, 249: 119 − 126. |
[6] |
TANAKA Y, SASAKI N, OHMIYA A J P J. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids [J]. Plant J, 2008, 54(4): 733 − 749. |
[7] |
HUGGETT J, DHEDA K, BUSTIN S A, et al. Real-time RT-PCR normalisation; strategies and considerations [J]. Genes Immun, 2005, 6(4): 279 − 284. |
[8] |
DERVEAUX S, VANDESOMPELE J, HELLEMANS J J M. How to do successful gene expression analysis using real-time PCR [J]. Methods, 2010, 50(4): 227 − 230. |
[9] |
THELLIN O, ELMOUALIJ B, HEINEN E, et al. A decade of improvements in quantification of gene expression and internal standard selection [J]. Biotechnol Adv, 2009, 27(4): 323 − 333. |
[10] |
马璐琳, 崔光芬, 王祥宁, 等. 西南鸢尾花色变异实时定量PCR内参基因的筛选与验证[J]. 核农学报, 2019, 33(9): 1707 − 1716.
MA Lulin, CUI Guangfen, WANG Xiangning, et al. Selection and validation of reference genes for quantitative real-time PCR analysis in Iris bulleyana during flower color variation [J]. J Nucl Agric Sci, 2019, 33(9): 1707 − 1716. |
[11] |
LI Weiguo, ZHANG Lihui, ZHANG Yandi, et al. Selection and validation of appropriate reference genes for quantitative real-time PCR normalization in staminate and perfect flowers of Andromonoecious taihangia rupestris [J/OL]. Front Plant Sci, 2017, 8: 729[2021-03-19]. doi: 10.3389/fpls.2017.00729. |
[12] |
WANG Xiaowei, WU Zhijun, BAO Wenqi, et al. Identification and evaluation of reference genes for quantitative real-time PCR analysis in Polygonum cuspidatum based on transcriptome data[J/OL]. BMC Plant Biol, 2019, 19(1): 498[2021-04-01]. doi: 10.1186/s12870-019-2108-0. |
[13] |
LIANG Lijun, HE Zhigui, YU Haizheng, et al. Selection and validation of reference genes for gene expression studies in Codonopsis pilosula based on transcriptome sequence data [J/OL]. Sci Rep, 2020, 10(1): 1362[2021-03-19]. doi: 10.1038/s41598-020-58328-5. |
[14] |
LIU Wei, YU Jie, WANG Yifan, et al. Selection of suitable internal controls for gene expression normalization in rats with spinal cord injury [J]. Neural Regen Res, 2022, 17(6): 1387 − 1392. |
[15] |
马璐琳, 段青, 崔光芬, 等. 钝裂银莲花花色素合成相关基因qRT-PCR内参基因的筛选[J]. 园艺学报, 2021, 48(2): 377 − 388.
MA Lulin, DUAN Qing, CUI Guangfen, et al. Selection and validation of reference genes for quantitative real-time PCR analysis of the correlated genes in flower pigments biosynthesis pathway of Anemone obtusiloba [J]. Acta Hortic Sin, 2021, 48(2): 377 − 388. |
[16] |
杨坤, 黄超, 卢山, 等. 铜胁迫下紫鸭跖草根组织实时定量PCR内参基因的选择[J]. 植物生理学报, 2021, 57(1): 195 − 204.
YANG Kun, HUANG Chao, LU Shan, et al. Reference gene selection for quantitative real-time PCR in purple setcreasea (Setcreasea purpurea) root tissue under copper stress [J]. Plant Physiol J, 2021, 57(1): 195 − 204. |
[17] |
SILVER N, BEST S, JIANG Jie, et al. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR[J]. BMC Mol Biol, 2006, 7: 33[2021-04-02]. doi: 10.1186/1471-2199-7-33. |
[18] |
VANDESOMPELE J, de PRETER K, PATTYN F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J/OL]. Genome Biol, 2002, 3(7): 34[2021-03-18]. doi: 10.1186/gb-2002-3-7-research0034. |
[19] |
ANDERSEN C L. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets [J]. Cancer Res, 2004, 64(15): 5245 − 5250. |
[20] |
PFAFFL M W, TICHOPAD A, PRGOMET C, et al. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-Based tool using pair-wise correlations [J]. Biotechnol Lett, 2004, 26(6): 509 − 515. |
[21] |
STANTON K A, EDGER P P, PUZEY J R, et al. A whole-transcriptome approach to evaluating reference genes for quantitative gene expression studies: a case study in Mimulus [J]. G3 Bethesda Md, 2017, 7(4): 1085 − 1095. |
[22] |
郭天麒. 麦冬Rubisco活化酶基因OjRCA的克隆及功能初步分析[D]. 北京: 北京林业大学, 2011.
GUO Tianqi. Cloning and Preliminary Functional Analysis of Rubisco Activase Gene OjRCA of Ophiopogon japonicas [D]. Beijing: Beijing Forestry University, 2011. |
[23] |
李聪. 麦冬OjERF基因的克隆与功能研究[D]. 北京: 北京林业大学, 2013.
LI Cong. Identification and Characterization of Transcription Factor OjERF Gene from Ophiopogon japonicas [D]. Beijing: Beijing Forestry University, 2013. |
[24] |
ZHENG Tangchun, CHEN Zhilin, JU Yiqian, et al. Reference gene selection for qRT-PCR analysis of flower development in Lagerstroemia indica and L. speciosa [J/OL]. PLoS One, 2018, 13(3): e0195004[2021-03-20]. doi: 10.1371/journal.pone.0195004. |
[25] |
JOSEPH J T, POOLAKKALODY N J, SHAH J M, et al. Plant reference genes for development and stress response studies [J]. J Biosci, 2018, 43(1): 173 − 187. |
[26] |
CHEN Y S, KOZLOV G, FAKIH R, et al. Mg2+-ATP sensing in CNNM, a putative magnesium transporter [J]. Structure, 2020, 28(3): 324 − 335. |
[27] |
张哲, 刘方, 宋水山. 植物生长发育过程中G蛋白偶联受体的研究进展[J]. 中国农学通报, 2014, 30(18): 23 − 28.
ZHANG Zhe, LIU Fang, SONG Shuishan, et al. The progress of G protein-coupled receptors in plant development [J]. Chin Agric Sci Bull, 2014, 30(18): 23 − 28. |
[28] |
曹亚萍, 王勇飞, 贾孟君, 等. 连翘花器官生长阶段内参基因筛选与评估[J]. 山西农业科学, 2020, 48(3): 298 − 303.
CAO Yaping, WANG Yongfei, JIA Mengjun, et al. Selecting and evaluation of reference genes during flower organ growth phase in Forsythia suspensa(Thunb. )Vahl [J]. J Shanxi Agric Sci, 2020, 48(3): 298 − 303. |
[29] |
ZHANG Yunxing, HAN Xiaojiao, CHEN Shuangshuang, et al. Selection of suitable reference genes for quantitative real-time PCR gene expression analysis in Salix matsudana under different abiotic stresses [J/OL]. Sci Rep, 2017, 7: 40290[2021-04-02]. doi: 10.1038/srep40290. |
[30] |
陈敏敏, 张茹佳, 查倩, 等. 百合体胚诱导、发育及不同组织实时定量PCR内参基因筛选[J]. 分子植物育种, 2018, 16(15): 4982 − 4990.
CHEN Minmin, ZHANG Ruijia, ZHA Qian, et al. Induction and development of lily somatic embryo and internal reference genes screening for RT-PCR in different tissues [J]. Mol Plant Breed, 2018, 16(15): 4982 − 4990. |
[31] |
GU Kaidi, WANG Chukun, HU Dagang, et al. How do anthocyanins paint our horticultural products? [J]. Sci Hortic, 2019, 249: 257 − 262. |
[32] |
LI Hanli, YANG Zhen, ZENG Qiwei, et al. Abnormal expression of bHLH3 disrupts a flavonoid homeostasis network, causing differences in pigment composition among mulberry fruits[J/OL]. Hortic Res, 2020, 7: 83[2021-03-25]. doi: 10.1038/s41438-020-0302-8. |
[33] |
DONG Tingting, HAN Rongpeng, YU Jiawen, et al. Anthocyanins accumulation and molecular analysis of correlated genes by metabolome and transcriptome in green and purple asparaguses (Asparagus officinalis L. ) [J]. Food Chem, 2019, 271: 18 − 28. |
[34] |
WANG Ziran, CUI Yuanyuan, VAINSTEIN A, et al. Regulation of fig (Ficus carica L. )fruit color: metabolomic and transcriptomic analyses of the flavonoid biosynthetic pathway[J/OL]. Front Plant Sci, 2017, 271: 01990[2021-03-26]. doi: 10.3389/fpls.2017.01990. |
[35] |
LIU Yuhua, LÜ Junheng, LIU Zhoubin, et al. Integrative analysis of metabolome and transcriptome reveals the mechanism of color formation in pepper fruit (Capsicum annuum L. )[J/OL]. Food Chem, 2020, 306: 125629[2021-04-10]. doi: 10.1016/j.foodchem.2019.125629. |
[36] |
YANG Bohan, HE Shuang, LIU Yuan, et al. Transcriptomics integrated with metabolomics reveals the effect of regulated deficit irrigation on anthocyanin biosynthesis in Cabernet Sauvignon grape berries[J/OL]. Food Chem, 2020, 314: 126170[2021-03-25]. doi: 10.1016/j.foodchem.2020.126170. |
[37] |
SUI Xiaoming, ZHAO Mingyuan, HAN Xu, et al. RrGT1, a key gene associated with anthocyanin biosynthesis, was isolated from Rosa rugosa and identified via overexpression and VIGS [J]. Plant Physiol Biochem, 2019, 135: 19 − 29. |
[38] |
FERNÁNDEZ M B, LUKASZEWICZ G, LAMATTINA L, et al. Selection and optimization of reference genes for RT-qPCR normalization: a case study in Solanum lycopersicum exposed to UV-B [J]. Plant Physiol Biochem, 2021, 160: 269 − 280. |
[39] |
ZHAO Zeying, ZHOU Hanwen, NIE Zhongnan, et al. Appropriate reference genes for RT-qPCR normalization in various organs of Anemone flaccida Fr. schmidt at different growing stages[J/OL]. Genes, 2021, 12(3): 459[2021-03-18]. doi: 10.3390/genes12030459. |