| [1] | ZHOUA Yiming, LU Haoyou, ZHAO Shen, et al. The beneficial effects of Tartary buckwheat (Fagopyrum tataricum Gaertn. ) on diet-induced obesity in mice are related to the modulation of gut microbiota composition[J]. Food Science and Human Wellness, 2023, 12(4): 1323−1330. |
| [2] | 吕勇, 许学微, 陈庆富, 等. 苦荞种子活力测定方法与其田间成苗率的相关性[J]. 贵州师范大学学报(自然科学版), 2024, 42(2): 112−117. LÜ Yong, XU Xuewei, CHEN Qingfu, et al. Relativity analysis between the percentage of seedlings in the field and the methods of seed testing of Tartary buckwheat[J]. Journal of Guizhou Normal University (Natural Sciences), 2024, 42(2): 112−117. |
| [3] | 陈旭玲, 李显团, 王横, 等. 60Co-γ辐射诱变苦荞品系中淀粉与可溶性糖突变种质的鉴定[J]. 贵州师范大学学报(自然科学版), 2025, 43(2): 85−92. CHEN Xuling, LI Xiantuan, WANG Heng, et al. Identification of mutant germplasm of starch and soluble sugar in Tartary buckwheat strain induced by 60Co-γ radiation.[J]. Journal of Guizhou Normal University (Natural Sciences), 2025, 43(2): 85−92. |
| [4] | 吴姗姗, 夏雨, 吴俏槿, 等. 5种苦荞的营养成分分析及比较[J]. 食品工业, 2021, 42(9): 334−337. WU Shanshan, XIA Yu, WU Qiaojin, et al. Analysis of nutritional components of Tartary buckwheat in different varieties and different producing areas[J]. The Food Industry, 2021, 42(9): 334−337. |
| [5] | CHAMP M, LANGKILDE A M, BROUNS F, et al. Advances in dietary fibre characterisation. 2. Consumption, chemistry, physiology and measurement of resistant starch; implications for health and food labelling[J]. Nutrition Research Reviews, 2003, 16(2): 143−161. |
| [6] | REGINA A, BERBEZY P, KOSAR-HASHEMI B, et al. A genetic strategy generating wheat with very high amylose content[J]. Plant Biotechnology Journal, 2015, 13(9): 1276−1286. |
| [7] | 张楚佳, 窦博鑫, 高嫚, 等. 物理法制备RS3型抗性淀粉的研究进展[J]. 食品工业科技, 2023, 44(13): 425−433. ZHANG Chujia, DOU Boxin, GAO Man, et al. Progress in the preparation of RS3 resistant starch by physical methods[J]. Science and Technology of Food Industry, 2023, 44(13): 425−433. |
| [8] | 闵芮涵, 孙敏译, 吴昀, 等. 离体百合鳞茎发育及淀粉合成酶基因LohGBSSI的克隆与表达[J]. 浙江农林大学学报, 2020, 37(2): 201−208. MIN Ruihan, SUN Minyi, WU Yun, et al. In vitro bulblet development and analysis of starch synthase gene (LohGBSSI) from Lilium ‘Sorbonne’[J]. Journal of Zhejiang A&F University, 2020, 37(2): 201−208. |
| [9] | WANG Lei, LIU Linling, WU Huala, et al. Evolutionary and expression analysis of starch synthase genes from Tartary buckwheat revealed the potential function of FtGBSSII-4 and FtGBSSII-5 in seed amylose biosynthesis[J]. Crop Science, 2023, 63(5): 2925−2940. |
| [10] | WANG Xun, FENG Bo, XU Zhibin, et al. Identification and characterization of granule bound starch synthase I (GBSSI) gene of Tartary buckwheat (Fagopyrum tataricum Gaertn. )[J]. Gene, 2014, 534(2): 229−235. |
| [11] | HEPSOMALI P, GROEGER J A, NISHIHIRA J, et al. Effects of oral gamma-aminobutyric acid (GABA) administration on stress and sleep in humans: a systematic review[J/OL]. Frontiers in Neuroscience, 2020, 14: 923[2024-09-25]. DOI: 10.3389/fnins.2020.00923. |
| [12] | ZHAO Mingxia, TUO Houzhen, WANG Shuhui, et al. The effects of dietary nutrition on sleep and sleep disorders[J/OL]. Mediators of Inflammation, 2020, 2020: 3142874[2024-09-25]. DOI: 10.1155/2020/3142874. |
| [13] | RONG Mei, JIA Jiujie, LIN Minqiu, et al. The effect of modified Qiyuan paste on mice with low immunity and sleep deprivation by regulating GABA nerve and immune system[J/OL]. Chinese Medicine, 2024, 19(1): 84[2024-09-25]. DOI: 10.1186/s13020-024-00939-5. |
| [14] | 金国明, 陈笑笑, 严国伟, 等. 发芽糙米γ-氨基丁酸富集、调控及其功能食品研究进展[J]. 浙江大学学报(农业与生命科学版), 2024, 50(3): 353−367. JIN Guoming, CHEN Xiaoxiao, YAN Guowei, et al. Recent advances in enrichment, regulation and the functional foods of γ-aminobutyric acid in germinated brown rice[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(3): 353−367. |
| [15] | 路静, 白术群, 郑学玲. 萌芽谷物中γ-氨基丁酸代谢及应激积累机制的研究进展[J]. 食品与发酵工业, 2024, 50(17): 380−386. LU Jing, BAI Shuqun, ZHENG Xueling. Research progress on the metabolism of γ-aminobutyric acid and the mechanism of stress accumulation in germinated grains[J]. Food and Fermentation Industries, 2024, 50(17): 380−386. |
| [16] | 张钰, 李静媛, 雷琦, 等. 亚精胺和柠檬酸联合处理促进荞麦芽中γ-氨基丁酸的富集[J]. 现代食品科技, 2024, 40(3): 200−208. ZHANG Yu, LI Jingyuan, LEI Qi, et al. Improving the enrichment of γ-aminobutyric acid in buckwheat sprouts by combined treatments using spermidine and citric acid[J]. Modern Food Science & Technology, 2024, 40(3): 200−208. |
| [17] | CHEN Guiyun, WANG Yushan, ZHANG Mingyue, et al. Cold atmospheric plasma treatment improves the γ-aminobutyric acid content of buckwheat seeds providing a new anti-hypertensive functional ingredient[J/OL]. Food Chemistry, 2022, 388: 1330643[2024-09-25]. DOI: 10.1016/j.foodchem.2022.133064. |
| [18] | RAJ S R G, NADARAJAH K. QTL and candidate genes: techniques and advancement in abiotic stress resistance breeding of major cereals[J/OL]. International Journal of Molecular Sciences, 2023, 24(1): 63[2024-09-25]. DOI: 10.3390/ijms24010006. |
| [19] | 吴家胜, 汪旭升. 数量性状位点(QTLs)内候选基因的生物信息学分析方法[J]. 浙江林学院学报, 2008, 25(1): 104−108. WU Jiasheng, WANG Xusheng. Methods of bioinformatic analysis for candidate genes underlying quantitative trait loci(QTLs)[J]. Journal of Zhejiang Forestry College, 2008, 25(1): 104−108. |
| [20] | 孙晓雪. 水稻功能性营养品质性状QTL定位及环境互作分析[D]. 哈尔滨: 东北农业大学, 2017. SUN Xiaoxue. Analysis of QTL Mapping and Environmental Interaction of Functional Nutritional Quality Traits in Rice[D]. Harbin: Northeast Agricultural University, 2017. |
| [21] | 黎瑞源, 梁龙兵, 石桃雄, 等. 苦荞重组自交系群体F5代SSR遗传图谱的构建[J]. 贵州师范大学学报(自然科学版), 2017, 35(4): 31−45. LI Ruiyuan, LIANG Longbing, SHI Taoxiong, et al. Construction of a microsatellite-based genetic map of Tartary buckwheat using F5 recombinant inbred lines[J]. Journal of Guizhou Normal University (Natural Sciences), 2017, 35(4): 31−45. |
| [22] | 张焕新. 抗性淀粉酶法制备及其特性与应用的研究[D]. 无锡: 江南大学, 2012. ZHANG Huanxin. The Preparation and Application of Resistant Starch with a Combination of α-Amylase and Pullulanse[D]. Wuxi: Jiangnan University, 2012. |
| [23] | 王传蔚. 多年生荞麦植物菜用品质评价[D]. 贵阳: 贵州师范大学, 2016. WANG Chuanwei. The Vegetable Quality Evaluation of Perennial Buckwheat[D]. Guiyang: Guizhou Normal University, 2016. |
| [24] | 薛贤滨, 黎瑞源, 任蓉蓉, 等. 苦荞(Fagopyrum tataricum) RILs群体果壳率相关性状的变异分析和QTL定位[J]. 基因组学与应用生物学, 2024, 43(3): 428−441. XUE Xianbin, LI Ruiyuan, REN Rongrong, et al. Variation analysis and QTL mapping of grain shell rate-related traits of RILs population in Tartary buckwheat (Fagopyrum tataricum)[J]. Genomics and Applied Biology, 2024, 43(3): 428−441. |
| [25] | SHI Taoxiong, LI Ruiyuan, ZHENG Ran, et al. Mapping QTLs for 1000-grain weight and genes controlling hull type using SNP marker in Tartary buckwheat (Fagopyrum tataricum)[J/OL]. BMC Genomics, 2021, 22(1): 1423[2024-09-25]. DOI: 10.1186/s12864-021-07449-w. |
| [26] | ZHANG Lijun, LI Xiuxiu, MA Bin, et al. The Tartary buckwheat genome provides insights into rutin biosynthesis and abiotic stress tolerance[J]. Molecular Plant, 2017, 10(9): 1224−1237. |
| [27] | 石桃雄, 郑俊青, 郑冉, 等. 苦荞重组自交系群体淀粉组分含量和产量的变异分析[J]. 贵州师范大学学报(自然科学版), 2021, 39(5): 1−6, 28. SHI Taoxiong, ZHENG Junqing, ZHENG Ran, et al. Variation analysis of starch components content and yield in recombinant inbred lines of Tartary buckwheat (Fagopyrum tataricum)[J]. Journal of Guizhou Normal University (Natural Sciences), 2021, 39(5): 1−6, 28. |
| [28] | 周一鸣, 李保国, 崔琳琳, 等. 荞麦淀粉及其抗性淀粉的颗粒结构[J]. 食品科学, 2013, 34(23): 25−27. ZHOU Yiming, LI Baoguo, CUI Linlin, et al. Granular structure of buckwheat starch and resistant starch[J]. Food Science, 2013, 34(23): 25−27. |
| [29] | CHRISTA K, SORAL-ŚMIETANA M. Buckwheat grains and buckwheat products-nutritional and prophylactic value of their components - a review[J]. Czech Journal of Food Sciences, 2008, 26(3): 153−162. |
| [30] | 郑发英, 曾姗姗, 刘思曼, 等. 黑苦荞淀粉与普通荞麦淀粉理化和结构性质的比较分析[J]. 食品与发酵工业, 2024, 50(10): 160−168. ZHENG Faying, ZENG Shanshan, LIU Siman, et al. Comparison and analysis of physicochemical and structural properties of black Tartary buckwheat starch and common buckwheat starch[J]. Food and Fermentation Industries, 2024, 50(10): 160−168. |
| [31] | 张余, 吴兴慧, 黄凯丰. 不同产地金荞叶菜的产量与品质分析[J]. 中国果菜, 2019, 39(12): 52−55. ZHANG Yu, WU Xinghui, HUANG Kaifeng. Yield and quality of Fagopyrum cymosums from different producing areas[J]. China Fruit & Vegetable, 2019, 39(12): 52−55. |
| [32] | 朱丽伟, 周焱, 蔡芳, 等. NIRS法定量分析多年生苦荞叶片蛋白质与GABA含量[J]. 光谱学与光谱分析, 2020, 40(8): 2421−2426. ZHU Liwei, ZHOU Yan, CAI Fang, et al. Quantitative analysis of perennial buckwheat leaves protein and GABA using near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2020, 40(8): 2421−2426. |
| [33] | 邹亮, 彭镰心, 许丽佳, 等. UPLC-TOF/MS测定苦荞中的γ-氨基丁酸[J]. 华西药学杂志, 2012, 27(3): 326−328. ZOU Liang, PENG Lianxin, XU Lijia, et al. Determination of γ-aminobutyric acid in Tartary buckwheat by UPLC-TOF/MS[J]. West China Journal of Pharmaceutical Sciences, 2012, 27(3): 326−328. |
| [34] | 路子峰, 苏峻冬, 徐麟, 等. 110份鹰嘴豆种质品质性状遗传多样性分析与综合评价[J]. 西北农业学报, 2024, 33(6): 1041−1048. LU Zifeng, SU Jundong, XU Lin, et al. Genetic diversity analysis and comprehensive evaluation of quality traits in 110 Chickpea (Cicer arietinum L. ) germplasm[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2024, 33(6): 1041−1048. |
| [35] | CHEN Liqing, LIN I W, QU Xiaoqing, et al. A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo[J]. The Plant Cell, 2015, 27(3): 607−619. |
| [36] | 张计育, 王刚, 王涛, 等. SWEET蛋白在植物生长发育中的功能作用研究进展[J]. 植物资源与环境学报, 2023, 32(5): 1−15. ZHANG Jiyu, WANG Gang, WANG Tao, et al. Research progress on functional roles of SWEET proteins in plant growth and development[J]. Journal of Plant Resources and Environment, 2023, 32(5): 1−15. |
| [37] | LI Pei, WANG Lihan, LIU Hongbo, et al. Impaired SWEET-mediated sugar transportation impacts starch metabolism in developing rice seeds[J]. The Crop Journal, 2022, 10(1): 98−108. |
| [38] | CUI Tiezhong, CONTE A, FOX J L, et al. Modulation of the respiratory super complexes in yeast: enhanced formation of cytochrome oxidase increases the stability and abundance of respiratory supercomplexes[J]. Journal of Biological Chemistry, 2014, 289(9): 6133−6141. |
| [39] | MA Haoli, ZHAO Heming, LIU Zhi, et al. The phytocyanin gene family in rice (Oryza sativa L. ): genome-wide identification, classification and transcriptional analysis[J/OL]. PLoS One, 2011, 6(10): 25184[2024-09-25]. DOI: 10.1371/journal. pone. 0025184. |
| [40] | ZHU Nengbo, WANG Ting, GE Liang, et al. γ-amino butyric acid (GABA) synthesis enabled by copper-catalyzed carboamination of alkenes[J]. Organic Letters, 2017, 19(18): 4718−4721. |