[1] |
李媛媛, 张双燕, 王传贵, 等. 毛竹采伐剩余物的化学成分、纤维形态及纸浆性能[J]. 浙江农林大学学报, 2019, 36(2): 219 − 226.
LI Yuanyuan, ZHANG Shuangyan, WANG Chuangui, et al. Chemical composition, fiber morphology, and pulping properties of logging residues in Phyllostachys edulis [J]. Journal of Zhejiang A&F University, 2019, 36(2): 219 − 226. |
[2] |
田华宇, 刘焕, 王国睿, 等. 刺竹活性炭的制备及吸附性能研究[J]. 浙江农林大学学报, 2024, 41(2): 429 − 436.
TIAN Huayu, LIU Huan, WANG Guorui, et al. Production and adsorption properties of activated charcoal from Bambusa sinospinosa [J]. Journal of Zhejiang A&F University, 2024, 41(2): 429 − 436. |
[3] |
童文瑄, 梁新鑫, 周吓星, 等. KOH共热法和水热活化法制备多孔竹活性炭的比较[J]. 林业工程学报, 2024, 9(2): 77 − 83.
TONG Wenxuan, LIANG Xinxin, ZHOU Xiaxing, et al. Comparation of porous bamboo activated carbon using KOH co-thermal activation and hydrothermal activation methods [J]. Journal of Forestry Engineering, 2024, 9(2): 77 − 83. |
[4] |
郑龙, 吴义强, 左迎峰. 竹剩余物资源化利用研究现状与展望[J]. 世界林业研究, 2021, 34(3): 82 − 88.
ZHENG Long, WU Yiqiang, ZUO Yingfeng. Research status and prospects of bamboo residues utilization [J]. World Forestry research, 2021, 34(3): 82 − 88. |
[5] |
曹善郅, 周家树, 张少博, 等. 生物质炭基尿素和普通尿素对毛竹林土壤氧化亚氮通量的影响[J]. 浙江农林大学学报, 2023, 40(1): 135 − 144.
CAO Shanzhi, ZHOU Jiashu, ZHANG Shaobo, et al. Effects of biochar-based urea and common urea on soil N2O flux in Phyllostachys edulis forest soil [J]. Journal of Zhejiang A&F University, 2023, 40(1): 135 − 144. |
[6] |
闫芳彬, 郑景明, 宫殷婷, 等. 园林废弃物资源化处理对人工林土壤养分及微生物碳源利用的影响[J]. 浙江农林大学学报, 2023, 40(5): 1045 − 1053.
YAN Fangbin, ZHENG Jingming, GONG Yinting, et al. Effects of garden waste reuse treatments on soil nutrients and microbial carbon source utilization in plantation soil [J]. Journal of Zhejiang A&F University, 2023, 40(5): 1045 − 1053. |
[7] |
TIAN Bo, FU Tianxin, WAN Yang, et al. B-and N-doped carbon dots by one-step microwave hydrothermal synthesis: tracking yeast status and imaging mechanism [J/OL]. Journal of Nanobiotechnology, 2021, 19 : 456[2024-04-22]. doi: 10.1186/s12951-021-01211-w. |
[8] |
CHEN Kui, QING Weixia, HU Weiping, et al. On-off-on fluorescent carbon dots from waste tea: their properties, antioxidant and selective detection of CrO4 2−, Fe3+, ascorbic acid and L-cysteine in real samples [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 213: 228 − 234. |
[9] |
ŠAFRANKO S, STANKOVIĆ A, HAJRA S, et al. Preparation of multifunctional N-doped carbon quantum dots from citrus clementina peel: investigating targeted pharmacological activities and the potential application for Fe3+ sensing [J/OL]. Pharmaceuticals, 2021, 14 (9): 857[2024-04-22]. doi: 10.3390/ph14090857. |
[10] |
GIORDANO M G, SEGANTI G, BARTOLI M, et al. An overview on carbon quantum dots optical and chemical features [J/OL]. Molecules, 2023, 28 (6): 2772[2024-04-22]. doi: 10.3390/molecules28062772. |
[11] |
LI Weidong, LIU Yuan, WANG Boyang, et al. Kilogram-scale synthesis of carbon quantum dots for hydrogen evolution, sensing and bioimaging [J]. Chinese Chemical Letters, 2019, 30(12): 2323 − 2327. |
[12] |
YOUNIS M R, HE Gang, LIN Jing, et al. Recent advances on graphene quantum dots for bioimaging applications [J/OL]. Frontiers in Chemistry, 2020, 8 : 424[2024-04-22]. doi: 10.3389/fchem.2020.00424. |
[13] |
ZHAO Yushuang, JING Shuangshuang, PENG Xinwen, et al. Synthesizing green carbon dots with exceptionally high yield from biomass hydrothermal carbon [J]. Cellulose, 2020, 27: 415 − 428. |
[14] |
KALYTCHUK S, WANG Yu, POLÁKOVÁ K, et al. Carbon dot fluorescence-lifetime-encoded anti-counterfeiting [J]. ACS Applied Materials & Interfaces, 2018, 10(35): 29902 − 29908. |
[15] |
LI Jiurong, GONG Xiao. The emerging development of multicolor carbon dots [J/OL]. Small, 2022, 18 (51): 2205099[2024-04-22]. doi: 10.1002/smll.202205099. |
[16] |
LIANG Lili, VEKSHA A, AMRAD M Z B M, et al. Upcycling of exhausted reverse osmosis membranes into value-added pyrolysis products and carbon dots [J/OL]. Journal of Hazardous Materials, 2021, 419 : 126472[2024-04-22]. doi: 10.1016/j.jhazmat.2021.126472. |
[17] |
LIU Huaxin, ZHONG Xue, PAN Qing, et al. A review of carbon dots in synthesis strategy [J/OL]. Coordination Chemistry Reviews, 2024, 498 [2024-04-22]. doi: 10.1016/j.ccr.2023.215468. |
[18] |
WU Ying, LI Yadong, PAN Xiaoqin, et al. Hemicellulose-triggered high-yield synthesis of carbon dots from biomass [J]. New Journal of Chemistry, 2021, 45(12): 5484 − 5490. |
[19] |
万才超, 柴亚玲, 魏松, 等. 生物质基炭材料在染料敏化太阳能电池电极领域的研究进展[J]. 林业工程学报, 2023, 8(5): 1 − 12.
WAN Caichao, CHAI Yaling, WEI Song, et al. Research progress of biomass-based carbon materials in dye-sensitized solar cells' electrodes [J]. Journal of Forestry Engineering, 2023, 8(5): 1 − 12. |
[20] |
张立丹, 霍鹏举, 梁嘉敏, 等. 生物质基木醋液的制备工艺和增效技术研究进展[J]. 林业工程学报, 2023, 8(5): 27 − 36.
ZHANG Lidan, HUO Pengju, LIANG Jiamin, et al. Research progress on preparation process and synergistic technology of biomass-based wood vinegar [J]. Journal of Forestry Engineering, 2023, 8(5): 27 − 36. |
[21] |
AMER W A, REHAB A F, ABDELGHAFAR M E, et al. Green synthesis of carbon quantum dots from purslane leaves for the detection of formaldehyde using quartz crystal microbalance [J]. Carbon, 2021, 179: 159 − 171. |
[22] |
THONGSAI N, TANAWANNAPONG N, PRANEERAD J, et al. Real-time detection of alcohol vapors and volatile organic compounds via optical electronic nose using carbon dots prepared from rice husk and density functional theory calculation [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 560: 278 − 287. |
[23] |
MOU Zihao, YANG Qingbin, ZHAO Bin, et al. Scalable and sustainable synthesis of carbon dots from biomass as efficient friction modifiers for polyethylene glycol synthetic oil [J]. ACS Sustainable Chemistry & Engineering, 2021, 9(44): 14997 − 15007. |
[24] |
LIU Yinghui, ZHU Chong, GAO Ying, et al. Biomass-derived nitrogen self-doped carbon dots via a simple one-pot method: physicochemical, structural, and luminescence properties [J/OL]. Applied Surface Science, 2020, 510 : 145437[2024-04-22]. doi: 10.1016/j.apsusc.2020.145437. |
[25] |
XIE Yadian, CHENG Dandan, LIU Xingliang, et al. Green hydrothermal synthesis of N-doped carbon dots from biomass highland barley for the detection of Hg2+ [J/OL]. Sensors, 2019, 19 (14): 3169[2024-04-22]. doi: 10.3390/s19143169. |
[26] |
GU Lin, ZHANG Jingru, YANG Guangxin, et al. Green preparation of carbon quantum dots with wolfberry as on-off-on nanosensors for the detection of Fe3+ and l-ascorbic acid [J/OL]. Food Chemistry, 2022, 376 : 131898[2024-04-22]. doi: 10.1016/j.foodchem.2021.131898. |
[27] |
张利洁, 李德刚, 韩文渊, 等. 磷掺杂碳量子点的制备及活化过一硫酸盐降解亚甲基蓝[J]. 无机盐工业, 2024, 56(1): 126 − 133.
ZHANG Lijie, LI Degang, HAN Wenyuan, et al. Preparation of phosphorus-doped carbon quantum dots and activation of peroxymonosulfate for degradation of methylene blue [J]. Inorganic Chemicals Industry, 2024, 56(1): 126 − 133. |
[28] |
LIU Yushan, WU Peng, WU Xueyun, et al. Nitrogen and copper(Ⅱ) co-doped carbon dots for applications in ascorbic acid determination by non-oxidation reduction strategy and cellular imaging [J/OL]. Talanta, 2020, 210 : 120649[2024-04-22]. doi: 10.1016/j.talanta.2019.120649. |
[29] |
MURUGAN N, PRAKASH M, JAYAKUMAR M, et al. Green synthesis of fluorescent carbon quantum dots from Eleusine coracana and their application as a fluorescence ‘turn-off’ sensor probe for selective detection of Cu2+ [J]. Applied Surface Science, 2019, 476: 468 − 480. |
[30] |
DESA S S, ISHII T, NUEANGNORAJ K. Sulfur-doped carbons from durian peels, their surface characteristics, and electrochemical behaviors [J]. ACS Omega, 2021, 6(38): 24902 − 24909. |
[31] |
刘凯, 胡妙言, 高诗雨, 等. 木质素荧光碳点-聚乙烯醇薄膜湿度传感器的制备及性能[J]. 林业工程学报, 2023, 8(3): 114 − 122.
LIU Kai, HU Miaoyan, GAO Shiyu, et al. Preparation and properties of lignin fluorescent CDs-PVA film humidity sensor [J]. Journal of Forestry Engineering, 2023, 8(3): 114 − 122. |
[32] |
BHATI K, TRIPATHY D B, DIXIT A K, et al. Waste biomass originated biocompatible luorescent graphene nano-sheets for latent fingerprints detection in versatile surfaces [J/OL]. Catalysts, 2023, 13 (7): 1077[2024-04-22]. doi: 10.3390/catal13071077. |
[33] |
LIU Zhixiong, YE Y W, CHEN H. Corrosion inhibition behavior and mechanism of N-doped carbon dots for metal in acid environment [J/OL]. Journal of Cleaner Production, 2020, 270 : 122458[2024-04-22]. doi: 10.1016/j.jclepro.2020.122458. |
[34] |
SHEN Dongjun, LONG Yijuan, WANG Jie, et al. Tuning the fluorescence performance of carbon dots with a reduction pathway [J]. Nanoscale, 2019, 11(13): 5998 − 6003. |
[35] |
JEONG G, PARK C H, YI Dongchan, et al. Green synthesis of carbon dots from spent coffee grounds via ball-milling: application in fluorescent chemosensors [J/OL]. Journal of Cleaner Production, 2023, 392 : 136250[2024-04-22]. doi: 10.1016/j.jclepro.2023.136250. |