[1] 刘坤,曹林,汪贵斌,等. 银杏生物量分配格局及异速生长模型[J]. 北京林业大学学报, 2017, 39(4): 12 − 20.

LIU Kun, CAO Lin, WANG Guibin, et al. Biomass allocation patterns and allometric models of Ginkgo biloba [J]. J Beijing For Univ, 2017, 39(4): 12 − 20.
[2] OLSON J S, WATTS J A, ALLISON L J. Carbon in Live Vegetation of Major World Ecosystems [R]. Oak Ridge: Oak Ridge Laboratory, 1983.
[3] 方精云,刘国华,徐嵩龄. 我国森林植被的生物量和净生产量[J]. 生态学报, 1996, 16(5): 497 − 508.

FANG Jingyun, LIU Guohua, XU Songling. Biomass and net production of forest vegetation in China [J]. Acta Ecol Sin, 1996, 16(5): 497 − 508.
[4] 邱东,周桂玲,刘同业. 3种棒果芥属植物生物量分配及异速生长分析[J]. 干旱地区农业研究, 2014, 32(6): 215 − 220.

QIU Dong, ZHOU Guiling, LIU Tongye. Analysis of biomass allocation and allometric growth of three Sterigmostemum species in Junggar Basin [J]. Agric Res Arid Areas, 2014, 32(6): 215 − 220.
[5] 董道瑞,李霞,万红梅,等. 塔里木河下游胡杨(Populus euphratica)地上生物量估测[J]. 中国沙漠, 2013, 33(3): 724 − 730.

DONG Daorui, LI Xia, WAN Hongmei, et al. Aboveground biomass estimation of Populus euphratica in the lower reaches of Tarim River [J]. J Desert Res, 2013, 33(3): 724 − 730.
[6] 汪金松,张春雨,范秀华,等. 臭冷杉生物量分配格局及异速生长模型[J]. 生态学报, 2011, 31(14): 3918 − 3927.

WANG Jinsong, ZHANG Chunyu, FAN Xiuhua, et al. Biomass allocation patterns and allometric models of Abies nephrolepis Maxim [J]. Acta Ecol Sin, 2011, 31(14): 3918 − 3927.
[7] 于贵瑞. 全球变化与陆地生态系统碳循环和碳蓄积[M]. 北京: 气象出版社, 2003: 157 − 158.
[8] 董鸣. 陆地生物群落调查观测与分析[M]. 北京: 中国标准出版社, 1997: 73 − 75.
[9] 刘琪璟. 嵌套式回归建立树木生物量模型[J]. 植物生态学报, 2009, 33(2): 331 − 337.

LIU Qijing. Nested regression for establishing tree biomass equations [J]. Chin J Plant Ecol, 2009, 33(2): 331 − 337.
[10] 张志,田昕,陈尔学,等. 森林地上生物量估测方法研究综述[J]. 北京林业大学学报, 2011, 33(5): 144 − 150.

ZHANG Zhi, TIAN Xin, CHEN Erxue, et al. Review of methods on estimating forest above ground biomass [J]. J Beijing For Univ, 2011, 33(5): 144 − 150.
[11] NIKLAS K J. Plant Allometry: The Scaling of Form and Process [M]. Chicago: University of Chicago Press, 1994.
[12] 朱江,韩海荣,康峰峰,等. 山西太岳山华北落叶松生物量分配格局与异速生长模型[J]. 生态学杂志, 2016, 35(11): 2918 − 2925.

ZHU Jiang, HAN Hairong, KANG Fengfeng, et al. Biomass allocation patterns and allometric models of Larix principis-rupprechtii in Mt. Taiyue, Shanxi [J]. Chin J Ecol, 2016, 35(11): 2918 − 2925.
[13] 汪珍川,杜虎,宋同清,等. 广西主要树种(组)异速生长模型及森林生物量特征[J]. 生态学报, 2015, 35(13): 4462 − 4472.

WANG Zhenchuan, DU Hu, SONG Tongqing, et al. Allometric models of major tree species and forest biomass in Guangxi [J]. Acta Ecol Sin, 2015, 35(13): 4462 − 4472.
[14] 张绘芳,朱雅丽,地力夏提•包尔汉,等. 阿尔泰山林区云杉和落叶松生物量分配格局研究[J]. 南京林业大学学报(自然科学版), 2017, 41(1): 203 − 208.

ZHANG Huifang, ZHU Yali, Dilixiati Baoerhan, et al. Biomass allocation patterns of Picea obovata and Larix sibirica in the Altai Mountains forest area [J]. J Nanjing For Univ Nat Sci Ed, 2017, 41(1): 203 − 208.
[15] 白志强,李缓,王文栋,等. 阿尔泰山优势树种的生物量模型构建及其生物量分配特征[J]. 林业资源管理, 2018(4): 34 − 40.

BAI Zhiqiang, LI Huan, WANG Wendong, et al. Biomass model establishment and allocation of dominant tree species in Altai Mountains [J]. For Res Manage, 2018(4): 34 − 40.
[16] 孟宪宇. 测树学[M]. 北京: 中国林业出版社, 2006: 197-199.
[17] 明安刚,郑路,麻静,等. 铁力木人工林生物量与碳储量及其分配特征[J]. 北京林业大学学报, 2015, 37(2): 32 − 39.

MING Angang, ZHENG Lu, MA Jing, et al. Biomass, carbon stock and allocation characteristics in Mesua ferrea plantation [J]. J Beijing For Univ, 2015, 37(2): 32 − 39.
[18] GOWER S T, KUCHARIK C J, NORMAN J M. Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems [J]. Remote Sensing Environ, 1999, 70(1): 29 − 51.
[19] CASE B S, HALL R J. Assessing prediction errors of generalized tree biomass and volume equations for the boreal forest region of west-central Canada [J]. Can J For Res, 2008, 38(6): 878 − 889.
[20] 国家林业局. 国家森林资源连续清查技术规定[R]. 北京: 国家林业局, 2014.
[21] 郝虎东,田青松,石凤翎,等. 无芒雀麦地上生物量及各构件生物量分配动态[J]. 中国草地学报, 2009, 31(4): 85 − 90.

HAO Hudong, TIAN Qingsong, SHI Fengling, et al. Allocated dynamics of aboveground biomass and structural biomass in Bromus inermis Leyss [J]. Chin J Grassland, 2009, 31(4): 85 − 90.
[22] 李涛. 荒漠植物异速生长指数及其空间格局适应降雨梯度变化的规律与机制研究[D]. 兰州: 兰州大学, 2010.

LI Tao. Response Mechanism of Desert Plant Allometric Exponents and Spatial Patterns to A Precipitation Gradient[D]. Lanzhou: Lanzhou University, 2010.
[23] HOUGHTON R A, LAWRENCE K T, HACKLER J L, et al. The spatial distribution of forest biomass in the Brazilian Amazon: a comparison of estimates [J]. Global Change Biol, 2001, 7: 731 − 746.
[24] SAATCHI S S, HOUGHTON R A, DOS SANTOS ALVALA R C, et al. Distribution of aboveground live biomass in the Amazon Basin [J]. Global Change Biol, 2007, 13(4): 816 − 837.
[25] 张绘芳,高亚琪,朱雅丽,等. 新疆雪岭杉生物量模型对比研究[J]. 西北林学院学报, 2015, 30(6): 52 − 58.

ZHANG Huifang, GAO Yaqi, ZHU Yali, et al. A comparative study on biomass models for Picea schrenkiana in Xinjiang [J]. J Northwest For Univ, 2015, 30(6): 52 − 58.
[26] BROWN S. Measuring carbon in forests: current status and future challenges [J]. Environ Pollut, 2002, 116(3): 363 − 372.
[27] BOND-LAMBERTY B, WANG C, GOWER S T. Aboveground and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba [J]. Can J For Res, 2002, 32: 1441 − 1450.
[28] 曾斌,翟学昌,彭丽,等. 赣南不同立地杉木人工林生产力研究[J]. 安徽农业科学, 2010, 38(14): 7625 − 7626.

ZENG Bin, ZHAI Xuechang, PENG Li, et al. Study on productivity of fir plantation in different sites in southern Jiangxi [J]. J Anhui Agric Sci, 2010, 38(14): 7625 − 7626.
[29] 单长卷. 黄土高原不同立地刺槐林水分关系研究[D]. 杨凌: 西北农林科技大学, 2004.

SHAN Changjuan. Study on the Relationship Between Soil Water and Water Eco-Physiological Characteristics of Locust in Different Habitas of the Loess Plateau[D]. Yangling: Northwest A&F University, 2004.
[30] 赖文豪,席沁,武海龙,等. 内蒙古兴和县低山丘陵立地类型划分与林草适宜性评价[J]. 浙江农林大学学报, 2018, 35(2): 331 − 339.

LAI Wenhao, XI Qin, WU Hailong, et al. Site classification type and vegetation suitabity for hilly land in Xinghe, Inner Mongolia [J]. J Zhejiang A&F Univ, 2018, 35(2): 331 − 339.